Mac YOLO V9推理测试(基于ultralytics)

环境:

Mac M1 (MacOS Sonoma 14.3.1)

Python 3.11+PyTorch 2.1.2

一、准备工作

使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。

YOLOv9目前提供了四种模型下载:yolov9-c.ptyolov9-e.ptgelan-c.ptgelan-e.pt

bash 复制代码
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt

将下载好的模型放到指定的位置(实际发现这一步不用做,白费了)。

下载示例图片(也可手动下载放置),放到指定位置下:

bash 复制代码
wget -P /Users/zhujiahui/Local/dataset -q https://media.roboflow.com/notebooks/examples/dog.jpeg

安装Python依赖

bash 复制代码
pip install opencv-python
pip install ultralytics

二、推理

编写以下代码:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("/Users/zhujiahui/Local/model/yolov9/yolov9-e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

直接运行,发现报错:

TypeError: ERROR ❌️ /Users/zhujiahui/Local/model/yolov9/yolov9-e.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com/ultralytics/yolov5.

This model is NOT forwards compatible with YOLOv8 at https://github.com/ultralytics/ultralytics.

Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'

意思是说从https://github.com/WongKinYiu/yolov9下载的模型yolov9-e.pt与本训练推理框架(ultralytics)不match,必须使用经过ultralytics训练的模型。

于是改动如下,选用ultralytics提供的YOLO V9模型:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

首次运行会下载模型到当前代码所在的文件夹下

对示例图片进行检测:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    results = yolo_model.predict(source='/Users/zhujiahui/Local/dataset/dog.jpeg', save=True, save_txt=True)
    print(results)


if __name__ == '__main__':
    yolov9_inference()

结果如下:

具体检测后的结果图片在runs/detect/predict/dog.jpeg下,效果:

|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| | |
| 原图 | 检测结果 |

输入的图片也可以通过OpenCV读入:

python 复制代码
def yolov9_inference2():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    input_image = cv2.imread("/Users/zhujiahui/Local/dataset/dog.jpeg")
    results = yolo_model.predict(source=input_image, save=True, save_txt=True)
    print(results)
相关推荐
菩提树下的凡夫1 小时前
瑞芯微RV1126目标识别算法Yolov8的部署应用
java·算法·yolo
Coovally AI模型快速验证6 小时前
无人机小目标检测新SOTA:MASF-YOLO重磅开源,多模块协同助力精度飞跃
人工智能·yolo·目标检测·机器学习·计算机视觉·无人机
飞翔的佩奇7 小时前
【完整源码+数据集+部署教程】骰子点数识别图像实例分割系统源码和数据集:改进yolo11-DCNV2
python·yolo·计算机视觉·数据集·yolo11·骰子点数识别图像实例分割
HUIMU_1 天前
DAY20-新世纪DL(DeepLearning/深度学习)战士:终(目标检测/YOLO)3
深度学习·yolo·目标检测·滑动窗口·非极大值抑制·交并比·bouding box
max5006001 天前
YOLOv8主干网络替换为UniConvNet的详细指南
运维·开发语言·人工智能·python·算法·yolo
Python图像识别2 天前
57_基于深度学习的农作物虫害检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
a1111111111ss2 天前
基于 YOLOv11n 的无人机航拍小目标检测算法学习
yolo·目标检测·无人机
Coovally AI模型快速验证2 天前
轻量级注意力模型HOTSPOT-YOLO:无人机光伏热异常检测新SOTA,mAP高达90.8%
人工智能·学习·yolo·计算机视觉·目标跟踪·无人机
Coovally AI模型快速验证2 天前
突破闭集限制:3D-MOOD 实现开集单目 3D 检测新 SOTA
人工智能·yolo·计算机视觉·3d·目标跟踪·无人机
Virgil1393 天前
【YOLO学习笔记】数据增强mosaic、Mixup、透视放射变换
笔记·学习·yolo