Mac YOLO V9推理测试(基于ultralytics)

环境:

Mac M1 (MacOS Sonoma 14.3.1)

Python 3.11+PyTorch 2.1.2

一、准备工作

使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。

YOLOv9目前提供了四种模型下载:yolov9-c.ptyolov9-e.ptgelan-c.ptgelan-e.pt

bash 复制代码
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt

将下载好的模型放到指定的位置(实际发现这一步不用做,白费了)。

下载示例图片(也可手动下载放置),放到指定位置下:

bash 复制代码
wget -P /Users/zhujiahui/Local/dataset -q https://media.roboflow.com/notebooks/examples/dog.jpeg

安装Python依赖

bash 复制代码
pip install opencv-python
pip install ultralytics

二、推理

编写以下代码:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("/Users/zhujiahui/Local/model/yolov9/yolov9-e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

直接运行,发现报错:

TypeError: ERROR ❌️ /Users/zhujiahui/Local/model/yolov9/yolov9-e.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com/ultralytics/yolov5.

This model is NOT forwards compatible with YOLOv8 at https://github.com/ultralytics/ultralytics.

Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'

意思是说从https://github.com/WongKinYiu/yolov9下载的模型yolov9-e.pt与本训练推理框架(ultralytics)不match,必须使用经过ultralytics训练的模型。

于是改动如下,选用ultralytics提供的YOLO V9模型:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

首次运行会下载模型到当前代码所在的文件夹下

对示例图片进行检测:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    results = yolo_model.predict(source='/Users/zhujiahui/Local/dataset/dog.jpeg', save=True, save_txt=True)
    print(results)


if __name__ == '__main__':
    yolov9_inference()

结果如下:

具体检测后的结果图片在runs/detect/predict/dog.jpeg下,效果:

|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| | |
| 原图 | 检测结果 |

输入的图片也可以通过OpenCV读入:

python 复制代码
def yolov9_inference2():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    input_image = cv2.imread("/Users/zhujiahui/Local/dataset/dog.jpeg")
    results = yolo_model.predict(source=input_image, save=True, save_txt=True)
    print(results)
相关推荐
njsgcs2 天前
chili3d笔记11 连接yolo python http.server 跨域请求 flask
笔记·yolo
FL16238631292 天前
基于yolov11的打电话玩手机检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
python·yolo·智能手机
那雨倾城3 天前
PiscTrace针对YOLO深度适配:从v8到v12
图像处理·人工智能·python·opencv·yolo·计算机视觉·目标跟踪
暴力袋鼠哥4 天前
基于YOLOv8的人流量识别分析系统
人工智能·python·opencv·yolo·机器学习
kngines6 天前
开源项目实战学习之YOLO11:ultralytics-cfg-models-fastsam(九)
ultralytics·clip模型·yolo11·fastsam·vit-b/32
羊小猪~~6 天前
深度学习基础--目标检测入门简介
网络·人工智能·深度学习·神经网络·yolo·目标检测·计算机视觉
°默然6 天前
LabelVision - yolo可视化标注工具
yolo
qq_508576097 天前
混淆矩阵(Confusion Matrix);归一化混淆矩阵(Confusion Matrix Normalized)
yolo
豆芽8198 天前
感受野(Receptive Field)
人工智能·python·深度学习·yolo·计算机视觉
狂奔solar8 天前
yolov8+kalman 实现目标跟踪统计人流量
yolo·kalman·匈牙利匹配