Mac YOLO V9推理测试(基于ultralytics)

环境:

Mac M1 (MacOS Sonoma 14.3.1)

Python 3.11+PyTorch 2.1.2

一、准备工作

使用YOLO一般都会接触ultralytics这个框架,今天来试试用该框架进行YOLO V9模型的推理。

YOLOv9目前提供了四种模型下载:yolov9-c.ptyolov9-e.ptgelan-c.ptgelan-e.pt

bash 复制代码
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt

将下载好的模型放到指定的位置(实际发现这一步不用做,白费了)。

下载示例图片(也可手动下载放置),放到指定位置下:

bash 复制代码
wget -P /Users/zhujiahui/Local/dataset -q https://media.roboflow.com/notebooks/examples/dog.jpeg

安装Python依赖

bash 复制代码
pip install opencv-python
pip install ultralytics

二、推理

编写以下代码:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("/Users/zhujiahui/Local/model/yolov9/yolov9-e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

直接运行,发现报错:

TypeError: ERROR ❌️ /Users/zhujiahui/Local/model/yolov9/yolov9-e.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com/ultralytics/yolov5.

This model is NOT forwards compatible with YOLOv8 at https://github.com/ultralytics/ultralytics.

Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'

意思是说从https://github.com/WongKinYiu/yolov9下载的模型yolov9-e.pt与本训练推理框架(ultralytics)不match,必须使用经过ultralytics训练的模型。

于是改动如下,选用ultralytics提供的YOLO V9模型:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()


if __name__ == '__main__':
    yolov9_inference()

首次运行会下载模型到当前代码所在的文件夹下

对示例图片进行检测:

python 复制代码
from ultralytics import YOLO


def yolov9_inference():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    results = yolo_model.predict(source='/Users/zhujiahui/Local/dataset/dog.jpeg', save=True, save_txt=True)
    print(results)


if __name__ == '__main__':
    yolov9_inference()

结果如下:

具体检测后的结果图片在runs/detect/predict/dog.jpeg下,效果:

|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| | |
| 原图 | 检测结果 |

输入的图片也可以通过OpenCV读入:

python 复制代码
def yolov9_inference2():
    yolo_model = YOLO("yolov9e.pt")
    yolo_model.info()
    input_image = cv2.imread("/Users/zhujiahui/Local/dataset/dog.jpeg")
    results = yolo_model.predict(source=input_image, save=True, save_txt=True)
    print(results)
相关推荐
zy_destiny1 小时前
【非机动车检测】用YOLOv8实现非机动车及驾驶人佩戴安全帽检测
人工智能·python·算法·yolo·机器学习·安全帽·非机动车
unix2linux1 小时前
YOLO v5 Series - HTTP-FLV - FFmpeg & (HTML5 + FLV.js ) Integrating
yolo·http·ffmpeg
向哆哆1 天前
BiFPN与RepViT协同机制在YOLOv8目标检测中的应用与优化
人工智能·深度学习·yolo·目标检测·yolov8
知来者逆1 天前
计算机视觉——基于YOLOV8 的人体姿态估计训练与推理
深度学习·yolo·计算机视觉·yolov8·姿态估计
DragonnAi1 天前
猫咪如厕检测与分类识别系统系列【六】分类模型训练+混合检测分类+未知目标自动更新
人工智能·python·yolo·目标检测·计算机视觉·分类·数据挖掘
Wiktok1 天前
YOLO 的 data.yaml 配置文件路径解析
深度学习·yolo·机器学习
才思喷涌的小书虫2 天前
学术分享:基于 ARCADE 数据集评估 Grounding DINO、YOLO 和 DINO 在血管狭窄检测中的效果
人工智能·yolo·目标检测·计算机视觉·ai·语言模型·视觉检测
DragonnAi2 天前
猫咪如厕检测与分类识别系统系列【三】融合yolov11目标检测
人工智能·yolo·目标检测·分类
AI技术控2 天前
基于YOLOv8的火车轨道检测识别系统:技术实现与应用前景
人工智能·算法·yolo·目标检测·计算机视觉
Mr_Chenph3 天前
YOLO 8 入坑(持续更新)
yolo·yolo8