5个 Elasticsearch 核心组件

Elasticsearch 是一个基于 Lucene 的搜索引擎,它提供了分布式、高可用、多租户的能力。Elasticsearch 的核心组件包括节点(Node)、集群(Cluster)、索引(Index)、分片(Shard)、副本(Replica)等。下面我将结合案例代码解释和说明这些核心组件。

节点(Node)

节点是 Elasticsearch 集群中的一个服务器,它负责存储数据和处理客户端请求。节点可以通过配置文件或启动参数设置角色,如主节点(Master)、数据节点(Data)、客户端节点(Client)等。

案例代码:

java 复制代码
// 创建一个节点设置
Settings settings = Settings.builder()
        .put("node.name", "node-1")
        .put("cluster.name", "my-cluster")
        .put("path.data", "/path/to/data")
        .put("path.logs", "/path/to/logs")
        .build();

// 创建一个节点
Node node = new Node(settings);

集群(Cluster)

集群是由一个或多个节点组成的,它们共同协作提供数据的存储和搜索服务。集群通过集群名称来区分,确保不同集群之间不会发生数据共享。

案例代码:

java 复制代码
// 创建一个集群客户端
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
        .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("host1"), 9300))
        .addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("host2"), 9300));

// 关闭客户端
client.close();

索引(Index)

索引是具有相似特征的文档集合。索引可以包含一个或多个类型(Type),每种类型都有自己的字段映射。在 Elasticsearch 7.x 版本中,一个索引只能包含一个类型。

案例代码:

java 复制代码
// 创建一个索引
CreateIndexRequest request = new CreateIndexRequest("my-index");
client.admin().indices().create(request).actionGet();

分片(Shard)

分片是索引数据的子集,它可以将一个大的索引拆分成多个部分,分布在不同的节点上。分片可以是主分片(Primary Shard)或副本分片(Replica Shard)。

案例代码:

java 复制代码
// 创建一个索引,设置分片数量和副本数量
request = new CreateIndexRequest("my-index")
        .settings(Settings.builder()
                .put("number_of_shards", 3)
                .put("number_of_replicas", 2));
client.admin().indices().create(request).actionGet();

副本(Replica)

副本是分片的复制,可以提高数据的可用性和搜索性能。副本可以分布在不同的节点上,当主分片发生故障时,副本可以升级为主分片。

案例代码:

java 复制代码
// 更新索引副本数量
UpdateIndexRequest updateRequest = new UpdateIndexRequest("my-index")
        .settings(Settings.builder()
                .put("number_of_replicas", 1));
client.admin().indices().updateSettings(updateRequest).actionGet();

以上是 Elasticsearch 核心组件的简要介绍和案例代码解释。要深入了解这些组件的原理和实现,建议阅读 Elasticsearch 官方文档和源码。

相关推荐
数智顾问7 小时前
(229页PPT)DG1888某大型制药集团企业数字化转型SAP蓝图设计解决方案(附下载方式)
大数据
Guheyunyi7 小时前
什么是安全监测预警系统?应用场景有哪些?
大数据·运维·人工智能·安全·音视频
清 晨7 小时前
AI 代理购物把“流量”变成“答案”,而“可信交付”决定你能不能被选中
大数据·人工智能·跨境电商·跨境·营销策略
小邓睡不饱耶7 小时前
深度实战:Spark GraphX构建用户信任网络,精准锁定高价值目标用户(含完整案例)
大数据·spark·php
BYSJMG7 小时前
计算机毕设推荐:基于大数据的共享单车数据可视化分析
大数据·后端·python·信息可视化·数据分析·课程设计
_周游7 小时前
Java8 API文档搜索引擎_3.搜索模块(程序)
搜索引擎
jl48638217 小时前
【选型指南】气密性检测仪显示屏如何兼顾IP65防护、-40℃~85℃宽温与快速交付?
大数据·人工智能·stm32·单片机·物联网
珠海西格电力7 小时前
零碳园区实现能源优化的具体措施解析
大数据·人工智能·物联网·智慧城市·能源
我和我导针锋相队7 小时前
国自然5页纸装下“多机制复杂问题”:用“主线+支线”逻辑,把乱麻理成渔网
大数据·人工智能·机器学习
Elastic 中国社区官方博客7 小时前
介绍 Elastic Workflows:用于 Elasticsearch 的原生自动化
大数据·人工智能·elasticsearch·搜索引擎·ai·自动化·全文检索