lora体验

项目链接

GitHub - cloneofsimo/lora: Using Low-rank adaptation to quickly fine-tune diffusion models.

现在如果想体验stable diffusion的lora功能,有很多种渠道吧,虽然lora是微软开源,但是cloneofsimo提供了适配stable diffusion的lora流程。

数据准备

我准备了20张葫芦娃的图片用于微调,没有什么特别操作。

微调

微调耗时很短,10分钟?

Code Review

代码基于cli_lora_pti.py 执行, 针对输入的关键词,我们生成对应的token id. 其实就是建立embedding的映射了。

这里有点不理解的是,initialize_token_ids, place_token_ids的作用不太理解。。。

接下来,进入

复制代码
PivotalTuningDatasetCapation

它的作用就是构建数据集。

接下来,还有inpaint的训练选项,这是一个我很感兴趣的功能。我们可以选择是使用inpainting_dataloader还是text2img_dataloader 加载数据

然后,我们设定require_grad为false。

复制代码
   unet.requires_grad_(False)
    vae.requires_grad_(False)

接下来,我们可以选择是否进行inversion, 如果选择训练inversion,我们会对于text encoder进行训练,

接下来,我们可以选择利用lora进行训练,这里可以选择是否使用extended lora进行训练,

然后,我们可以inspect_lora(什么意思呢?

最后,我们又一次进行tuning,对象为text_encoder和unet。并进行保存!我认为这个代码结构非常的清晰简洁,值得多看!

看什么呢?

有几个问题需要再梳理清楚

  1. initialized_token_id和place holder token id是什么关系

  2. inpaint 的操作如何进行?

  3. inspect lora是什么操作?

  4. inversion的细节

  5. extended lora是什么操作?

  6. unet微调的细节?

  7. vae不需要微调吗?

相关推荐
Blossom.1186 分钟前
基于Mamba-2的实时销量预测系统:如何用选择性状态空间干掉Transformer的O(n²)噩梦
人工智能·python·深度学习·react.js·机器学习·设计模式·transformer
七宝大爷24 分钟前
编码器-解码器架构:理解Transformer的两种基本模式
深度学习·架构·transformer
余蓝1 小时前
部署语音模型CosyVoice,附多种玩法
人工智能·语言模型·transformer·语音识别·audiolm
七宝大爷1 小时前
Transformer架构变体全景图:从BERT到GPT的演化路径
架构·bert·transformer
陈文锦丫1 天前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
Ai173163915792 天前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
audyxiao0013 天前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
高洁013 天前
具身智能-视觉语言导航(VLN)
深度学习·算法·aigc·transformer·知识图谱
youngfengying3 天前
Swin Transformer
人工智能·深度学习·transformer
CNRio3 天前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer