机器学习入门:sklearn基础教程

Scikit-learn(简称sklearn)是Python中最受欢迎的机器学习库之一,它提供了丰富的机器学习算法和工具,适用于各种任务和场景。本文将为您介绍sklearn的基础知识和常用功能,带您踏入机器学习的世界。

1. 安装与导入

首先,您需要安装sklearn库。如果您使用的是Anaconda,sklearn通常已经预装了。如果没有,您可以通过pip安装:

bash 复制代码
pip install -U scikit-learn

安装完成后,您可以在Python中导入sklearn:

python 复制代码
import sklearn

2. 数据集加载与探索

sklearn内置了一些经典的数据集,您可以直接加载并进行探索。例如,加载鸢尾花数据集:

python 复制代码
from sklearn.datasets import load_iris

iris = load_iris()
X, y = iris.data, iris.target

接下来,您可以查看数据集的特征和标签,以及它们的形状:

python 复制代码
print("特征数量:", X.shape[1])
print("样本数量:", X.shape[0])
print("标签种类:", len(set(y)))

3. 数据预处理

在机器学习任务中,数据预处理是非常重要的一步。sklearn提供了丰富的数据预处理功能,包括特征缩放、数据标准化、缺失值处理等。例如,对数据进行标准化:

python 复制代码
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

4. 模型选择与训练

sklearn提供了多种机器学习算法,您可以根据任务的性质选择合适的模型。例如,使用支持向量机(SVM)进行分类:

python 复制代码
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

model = SVC()
model.fit(X_train, y_train)

5. 模型评估

训练完成后,您可以对模型进行评估。sklearn提供了多种评估指标和方法。例如,使用准确率评估分类模型

python 复制代码
from sklearn.metrics import accuracy_score

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

6. 模型调优

sklearn还提供了网格搜索和交叉验证等功能,帮助您调优模型的参数,提高模型性能。

结语

通过本文的sklearn基础教程,您已经初步了解了sklearn的基本用法和常用功能。sklearn是一个功能强大且易于上手的机器学习库,希望本文能为您进入机器学习领域提供一些帮助。继续学习和实践,您将能够掌握更多高级技巧,并在实际项目中应用机器学习技术。

相关推荐
汤姆和佩琦20 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
两千连弹2 天前
机器学习 ---朴素贝叶斯
人工智能·机器学习·numpy·概率论·sklearn
诸神缄默不语4 天前
用sklearn运行分类模型,选择AUC最高的模型保存模型权重并绘制AUCROC曲线(以逻辑回归、随机森林、梯度提升、MLP为例)
分类·逻辑回归·sklearn
汤姆和佩琦12 天前
2025-1-10-sklearn学习(36、37) 数据集转换-无监督降维+随机投影 沙上并禽池上暝。云破月来花弄影。
人工智能·python·学习·机器学习·sklearn
Zerol_Yan13 天前
sklearn-逻辑回归-制作评分卡
人工智能·逻辑回归·sklearn
汤姆和佩琦21 天前
2025-1-2-sklearn学习(30)模型选择与评估-验证曲线: 绘制分数以评估模型 真珠帘卷玉楼空,天淡银河垂地。
人工智能·python·学习·机器学习·sklearn·模型选择与评估
汤姆和佩琦25 天前
2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。
人工智能·深度学习·神经网络·学习·机器学习·sklearn
NiNg_1_2341 个月前
Python中SKlearn的K-means使用详解
python·kmeans·sklearn
汤姆和佩琦1 个月前
2024-12-25-sklearn学习(20)无监督学习-双聚类 料峭春风吹酒醒,微冷,山头斜照却相迎。
学习·聚类·sklearn
18号房客1 个月前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn