【目标检测论文解读复现NO.38】基于改进YOLOv8模型的轻量化板栗果实识别方法

前言
此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。

一、摘要

为实现自然环境下的板栗果实目标快速识别,该研究以湖北省种植板栗为研究对象,提出了一种基于改进 YOLOv8 模型的栗果识别方法 YOLOv8-PBi。首先,将部分卷积(partial convolution,PConv)引入 C2f 模块中,缩减卷 积过程中的浮点数和计算量;其次,引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),增 强多尺度特征融合性能,最后,更改边界框损失函数为动态非单调聚焦机制 WIoU(wise intersection over union, WIoU),提高模型收敛速度,进一步提升模型检测性能。试验结果表明,改进 YOLOv8-PBi 模型准确率、召回率和平 均精度分别为 89.4%、74.9%、84.2%;相比原始基础网络 YOLOv8s,模型权重减小 46.22%,准确率、召回率和平均精 度分别提升 1.3、1.5、1.8 个百分点。部署模型至边缘嵌入式设备上,经过 TensorRT 加速后,检测帧率达到 43 帧/s。该 方法可为板栗智能化收获过程中的栗果识别提供技术基础。

二、网络模型及核心创新点

这篇文章图表公式实验比较多,增加了损失函数对比等实验,以及图的注释等比较好比较全,值得大家学习的一篇中文核心论文。

**注:**论文原文出自 李茂,肖洋轶,宗望远,等. 基于改进 YOLOv8 模型的轻量化板栗果实识别方法[J]. 农业工程学报,2024,40(1):201- 209. doi: 10.11975/j.issn.1002-6819.202309185

解读的系列文章,本人已进行创新点代码复现。

相关推荐
TY-20254 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
Coovally AI模型快速验证12 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
程序猿小D1 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测
mozun20201 天前
《量子雷达》第4章 量子雷达的检测与估计 预习2025.8.14
目标检测·量子计算·量子雷达·光子·量子技术·检测估计
楚韵天工2 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
老艾的AI世界2 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
思通数据2 天前
AI视频监控:重构安防行业智能化新生态
人工智能·安全·目标检测·机器学习·计算机视觉·重构·数据挖掘
钓了猫的鱼儿2 天前
无人机航拍数据集|第14期 无人机水体污染目标检测YOLO数据集3000张yolov11/yolov8/yolov5可训练
yolo·目标检测·猫脸码客·yolo数据集·无人机航拍数据集·无人机水体污染目标检测
Debroon3 天前
CV 医学影像分类、分割、目标检测,之【血细胞分类】项目拆解
目标检测·分类·数据挖掘
知来者逆3 天前
VLMs开发——基于Qwen2.5-VL 实现视觉语言模型在目标检测中的层级结构与实现方法
目标检测·计算机视觉·目标跟踪·语言模型·多模态·vlms·qwen2.5-vl