【Pytorch】1.读取训练数据集

导入Dataset类

py 复制代码
from torch.utils.data import Dataset
# 注意是Dataset(大写)的才是类

通过jupyter我们可以阅读一下Dataset类的具体使用方法

py 复制代码
help(Dataset)
# 或者直接
Dataset??

我们可以看到具体对Dataset类的解释

从蓝色字体我们可以得出

  • 所有的代表map的数据集应该继承这个类
  • 所有继承的子类都重写__getitem__这个方法,这个方法支持获取数据样本中的指定键
  • 同时子类也要重写__len__这个方法返回数据集大小
  • 子类可以重写__getitem__,来加速样本生成
    也就是说我们要重写__getitem__方法与__len__方法

其他导入包

py 复制代码
from PIL import Image  # 主要用于图像的操作
import os  # 文件操作

Image用于将目标路径的文件转化为可以打开的图片变量
os用于文件操作

  • listdir对目标文件夹中的文件名称列成列表
  • os.path.join用于将两个地址进行拼接

MyData类的定义

py 复制代码
class MyData(Dataset):  # 创建一个MyData类,同时继承Dataset类
    def __init__(self, root_dir, label_dir):  # 类似于c++的构造函数
        # root_dir 一般设置为训练集文件夹的地址(train)
        # label_dir 一般设置为分类文件夹的地址(ants)
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(root_dir, label_dir)  # 这个函数的作用是将root_dir的地址与label_dir的地址拼接起来
        self.img_path = os.listdir(self.path)  # 将特定文件夹地址(path)中的所有文件列成一个list

    def __getitem__(self, index):  # 重写父类的方法
        img_name = self.img_path[index]  # 获取对应下标的图片名
        img_item_path = os.path.join(self.path, img_name)  # 获取图片路径
        img = Image.open(img_item_path)  # 根据图片路径打开图片
        # img.show()    展示图片
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.img_path)

类的实例化

py 复制代码
# root_dir 一般设置为训练集文件夹的地址(train)
# label_dir 一般设置为分类文件夹的地址(ants)
root_dir = "hymenoptera_data/train"
ant_label_dir = "ants"
bee_label_dir = "bees"
# 生成对应训练集的图片、标签列表
ants_dataset = MyData(root_dir, ant_label_dir)
bees_dataset = MyData(root_dir, bee_label_dir)

# 列表相加,前提是必须重载__len__方法
train_dataset = ants_dataset + bees_dataset

源码链接

github

参考资料

PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
Francek Chen1 小时前
【自然语言处理】应用06:针对序列级和词元级应用微调BERT
人工智能·pytorch·深度学习·自然语言处理·bert
belldeep1 小时前
python:pyTorch 入门教程
pytorch·python·ai·torch
子夜江寒1 小时前
基于PyTorch的CBOW模型实现与词向量生成
pytorch·python
一棵开花的树,枝芽无限靠近你2 小时前
【Pytorch】(一)使用 PyTorch 进行深度学习:60 分钟速成
人工智能·pytorch·深度学习
arthur.dy.lee2 小时前
在pycharm中使用powershell7解决conda,ohmyposh报错的问题
ide·pycharm·conda
Autumn72992 小时前
【 jupyter 】PyCharm配置服务器连接jupyter
服务器·jupyter·pycharm
盼小辉丶3 小时前
PyTorch实战(21)——扩散模型(Diffusion Model)
pytorch·深度学习·stable diffusion·生成模型
小途软件19 小时前
ssm607家政公司服务平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
技术宅学长20 小时前
关于CLS与mean_pooling的一些笔记
人工智能·pytorch·笔记·pycharm
头发够用的程序员20 小时前
Ultralytics 代码库深度解读【六】:数据加载机制深度解析
人工智能·pytorch·python·深度学习·yolo·边缘计算·模型部署