【Pytorch】1.读取训练数据集

导入Dataset类

py 复制代码
from torch.utils.data import Dataset
# 注意是Dataset(大写)的才是类

通过jupyter我们可以阅读一下Dataset类的具体使用方法

py 复制代码
help(Dataset)
# 或者直接
Dataset??

我们可以看到具体对Dataset类的解释

从蓝色字体我们可以得出

  • 所有的代表map的数据集应该继承这个类
  • 所有继承的子类都重写__getitem__这个方法,这个方法支持获取数据样本中的指定键
  • 同时子类也要重写__len__这个方法返回数据集大小
  • 子类可以重写__getitem__,来加速样本生成
    也就是说我们要重写__getitem__方法与__len__方法

其他导入包

py 复制代码
from PIL import Image  # 主要用于图像的操作
import os  # 文件操作

Image用于将目标路径的文件转化为可以打开的图片变量
os用于文件操作

  • listdir对目标文件夹中的文件名称列成列表
  • os.path.join用于将两个地址进行拼接

MyData类的定义

py 复制代码
class MyData(Dataset):  # 创建一个MyData类,同时继承Dataset类
    def __init__(self, root_dir, label_dir):  # 类似于c++的构造函数
        # root_dir 一般设置为训练集文件夹的地址(train)
        # label_dir 一般设置为分类文件夹的地址(ants)
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(root_dir, label_dir)  # 这个函数的作用是将root_dir的地址与label_dir的地址拼接起来
        self.img_path = os.listdir(self.path)  # 将特定文件夹地址(path)中的所有文件列成一个list

    def __getitem__(self, index):  # 重写父类的方法
        img_name = self.img_path[index]  # 获取对应下标的图片名
        img_item_path = os.path.join(self.path, img_name)  # 获取图片路径
        img = Image.open(img_item_path)  # 根据图片路径打开图片
        # img.show()    展示图片
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.img_path)

类的实例化

py 复制代码
# root_dir 一般设置为训练集文件夹的地址(train)
# label_dir 一般设置为分类文件夹的地址(ants)
root_dir = "hymenoptera_data/train"
ant_label_dir = "ants"
bee_label_dir = "bees"
# 生成对应训练集的图片、标签列表
ants_dataset = MyData(root_dir, ant_label_dir)
bees_dataset = MyData(root_dir, bee_label_dir)

# 列表相加,前提是必须重载__len__方法
train_dataset = ants_dataset + bees_dataset

源码链接

github

参考资料

PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】

相关推荐
盼小辉丶1 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
Tiger Z3 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
科大饭桶19 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
weixin_5079299121 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
weixin_456904271 天前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
充气大锤1 天前
从0开始配置conda环境并在PyCharm中使用
ide·pycharm·conda
盼小辉丶1 天前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
之歆1 天前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
失散132 天前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
Re_draw_debubu2 天前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆