MySQL中的索引

索引相关概念


基础概念:

在MySQL中,索引是一种数据结构,用于加快数据库查询的速度和性能。索引可以帮助MySQL快速定位和访问表中的特定数据,就像书籍的索引一样,通过存储指向数据行的指针,可以快速查找到需要的页面。

底层数据结构 (B+树):

1.磁盘读写代价更低:非叶子节点不存放数据,只存储指针,相对来说存储压力低。数据只存储在叶子节点,在查询比对的时候,就不会把非叶子节点上的数据也加载出来了。

2.查询效率稳定:因为数据都存储在非叶子节点,在查询时都要从根节点开始对比。最终到叶子节点获取数据。

3.便于扫库和区间查询:叶子节点之间采用双向指针。在范围查询时更加方便。比如说:我们现在要查找索引为6~34区间的数据。先从根节点出发找到比38小的16,再从16往左找到叶子节点6,由于叶子节点之间有双向指针,因此6~34区间的数据都能获取!(这个区间内的数据不需要再从根节点再次查找)

总结:

1.什么是索引:

索引在项目中还是比较常见的,它是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。

2.索引底层的数据结构:

MySQL的默认的存储引擎InnoDB采用的B+树的数据结构来存储索引,选择B+树的主要的原因是:第一阶数更多,路径更短,第二个磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据,第三是B+树便于扫库和区间查询,叶子节点是一个双向链表。

3.B树和B+树的区别:

第一:在B树中,非叶子节点和叶子节点都会存放数据,而B+树的所有的数据都会出现在叶子节点,在查询的时候,B+树查找效率更加稳定。

第二:在进行范围查询的时候,B+树效率更高,因为B+树都在叶子节点存储,并且叶子节点是一个双向链表。

相关推荐
m0_736927041 小时前
想抓PostgreSQL里的慢SQL?pg_stat_statements基础黑匣子和pg_stat_monitor时间窗,谁能帮你更准揪出性能小偷?
java·数据库·sql·postgresql
lang201509281 小时前
MySQL 8.0.29 及以上版本中 SSL/TLS 会话复用(Session Reuse)
数据库·mysql
望获linux1 小时前
【实时Linux实战系列】使用 u-trace 或 a-trace 进行用户态应用剖析
java·linux·前端·网络·数据库·elasticsearch·操作系统
咖啡Beans1 小时前
6分钟慢速搭建MySQL服务器
mysql
清和与九2 小时前
binLog、redoLog和undoLog的区别
数据库·oracle
望获linux2 小时前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
总有刁民想爱朕ha2 小时前
Python自动化从入门到实战(24)如何高效的备份mysql数据库,数据备份datadir目录直接复制可行吗?一篇给小白的完全指南
数据库·python·自动化·mysql数据库备份
朝九晚五ฺ3 小时前
【Redis学习】持久化机制(RDB/AOF)
数据库·redis·学习
虾说羊3 小时前
sql中连接方式
数据库·sql
liweiweili1263 小时前
Django中处理多数据库场景
数据库·python·django