day6_动态规划1

动态规划

一、动态规划解题套路框架

动态规划问题性质

1.暴力递归

引出 重叠子问题

2.使用"备忘录"

目的:重叠子问题(使用数组或哈希表)

带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和常见的动态规划解法已经差不多了,只不过这种解法是「自顶向下」进行「递归」求解,我们++更常见的动态规划代码是「自底向上」进行「递推」求解++。

3.自底向上

啥叫「自底向上」?反过来,我们直接从最底下、最简单、问题规模最小、已知结果的 f(1)f(2)(base case)开始往上推,直到推到我们想要的答案 f(20)。这就是「递推」的思路,这也是++动态规划一般都脱离了递归,而是由循环迭代完成计算的原因++。

4.状态转移方程

f(n) 的函数参数会不断变化,所以你把参数 n 想做一个状态,这个状态 n 是由状态 n - 1 和状态 n - 2 转移(相加)而来,这就叫状态转移,仅此而已。

状态转移方程直接代表着暴力解法。

千万不要看不起暴力解,动态规划问题最困难的就是写出这个暴力解,即状态转移方程

只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。

5.细节优化:

一般是动态规划问题的最后一步优化,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试缩小 DP table 的大小,只记录必要的数据,从而降低空间复杂度

例题1,零钱兑换

带备忘录的递归解法

java 复制代码
class Solution {
    int[] memo;

    int coinChange(int[] coins, int amount) {
        memo = new int[amount + 1];
        // 备忘录初始化为一个不会被取到的特殊值,代表还未被计算
        Arrays.fill(memo, -666);

        return dp(coins, amount);
    }

    int dp(int[] coins, int amount) {
        if (amount == 0) return 0;
        if (amount < 0) return -1;
        // 查备忘录,防止重复计算
        if (memo[amount] != -666)
            return memo[amount];

        int res = Integer.MAX_VALUE;
        for (int coin : coins) {
            // 计算子问题的结果
            int subProblem = dp(coins, amount - coin);
            // 子问题无解则跳过
            if (subProblem == -1) continue;
            // 在子问题中选择最优解,然后加一
            res = Math.min(res, subProblem + 1);
        }
        // 把计算结果存入备忘录
        memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;
        return memo[amount];
    }
}

动态规划解法

java 复制代码
class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        // 数组大小为 amount + 1,初始值也为 amount + 1
        Arrays.fill(dp, amount + 1);

        // base case
        dp[0] = 0;
        // 外层 for 循环在遍历所有状态的所有取值
        for (int i = 0; i < dp.length; i++) {
            // 内层 for 循环在求所有选择的最小值
            for (int coin : coins) {
                // 子问题无解,跳过
                if (i - coin < 0) {
                    continue;
                }
                dp[i] = Math.min(dp[i], 1 + dp[i - coin]);
            }
        }
        return (dp[amount] == amount + 1) ? -1 : dp[amount];
    }
}

总结

计算机解决问题其实没有任何特殊的技巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考"如何穷举",然后再追求"如何聪明地穷举"。

列出状态转移方程,就是在解决"如何穷举"的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求"如何聪明地穷举"。用空间换时间的思路,是降低时间复杂度的不二法门,除此之外,试问,还能玩出啥花活?

一、动态规划设计:最长递增子序列

参考链接动态规划设计:最长递增子序列 | labuladong 的算法笔记

设计状态转移方程

借助经典的「最长递增子序列问题」来讲一讲设计动态规划的通用技巧:数学归纳思想

1.最长递增子序列问题(动态规划)
java 复制代码
int lengthOfLIS(int[] nums) {
    // 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度
    int[] dp = new int[nums.length];
    // base case:dp 数组全都初始化为 1
    Arrays.fill(dp, 1);
    for (int i = 0; i < nums.length; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) 
                dp[i] = Math.max(dp[i], dp[j] + 1);
        }
    }
    
    int res = 0;
    for (int i = 0; i < dp.length; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}
2.最长递增子序列问题(动态规划+二分查找)
java 复制代码
int lengthOfLIS(int[] nums) {
    int[] top = new int[nums.length];
    // 牌堆数初始化为 0
    int piles = 0;
    for (int i = 0; i < nums.length; i++) {
        // 要处理的扑克牌
        int poker = nums[i];

        /***** 搜索左侧边界的二分查找 *****/
        int left = 0, right = piles;
        while (left < right) {
            int mid = (left + right) / 2;
            if (top[mid] > poker) {
                right = mid;
            } else if (top[mid] < poker) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        /*********************************/
        
        // 没找到合适的牌堆,新建一堆
        if (left == piles) piles++;
        // 把这张牌放到牌堆顶
        top[left] = poker;
    }
    // 牌堆数就是 LIS 长度
    return piles;
}
3. 354.俄罗斯套娃信封问题(hard)

//在二分查找的基础上解决,只使用动态规划会超出时间限制

  1. 将宽度升序排序,在宽度相同的基础上进行降序排序

    因为宽度或高度有一个相同就不能嵌套,所以,为了保证结果不会出现两个宽度相同的信封而将高度降序

  2. 只根据处理后的高度进行最长递增子序列问题解决

java 复制代码
class Solution {
// envelopes = [[w, h], [w, h]...]
public int maxEnvelopes(int[][] envelopes) {
    int n = envelopes.length;
    // 按宽度升序排列,如果宽度一样,则按高度降序排列
    Arrays.sort(envelopes, (int[] a, int[] b) -> {
        return a[0] == b[0] ? 
            b[1] - a[1] : a[0] - b[0];
    });
    // 对高度数组寻找 LIS
    int[] height = new int[n];
    for (int i = 0; i < n; i++)
        height[i] = envelopes[i][1];

    return lengthOfLIS(height);
}

int lengthOfLIS(int[] nums) {
    int[] top = new int[nums.length];
    // 牌堆数初始化为 0
    int piles = 0;
    for (int i = 0; i < nums.length; i++) {
        // 要处理的扑克牌
        int poker = nums[i];

        /***** 搜索左侧边界的二分查找 *****/
        int left = 0, right = piles;
        while (left < right) {
            int mid = (left + right) / 2;
            if (top[mid] > poker) {
                right = mid;
            } else if (top[mid] < poker) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        /*********************************/
        
        // 没找到合适的牌堆,新建一堆
        if (left == piles) piles++;
        // 把这张牌放到牌堆顶
        top[left] = poker;
    }
    // 牌堆数就是 LIS 长度
    return piles;
}

}

二、最优子结构原理和dp数组遍历方向

重点

1、到底什么才叫「最优子结构」,和动态规划什么关系。

子问题之间独立,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的

动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

2、如何判断一个问题是动态规划问题,即如何看出是否存在重叠子问题。

求最值,抽象出递归框架,如果达到某个状态可以由不同的子状态组成,那么这个问题就存在重叠子问题

3、为什么经常看到将 dp 数组的大小设置为 n + 1 而不是 n

因为递归一般是使用方法,而dp一般使用数组结合for循环进行计算无法定义 base case

  1. dp 函数的定义,dp(s1, i, s2, j) 计算 s1[0..i]s2[0..j] 的编辑距离,那么 i, j 等于 -1 时代表空串的 base case,所以函数开头处理了这两种特殊情况。
  2. 再看 dp 数组,你当然也可以定义 dp[i][j] 存储 s1[0..i]s2[0..j] 的编辑距离,但问题是 base case 怎么搞?索引怎么能是 -1 呢?
  3. 所以我们把 dp 数组初始化为 int[m+1][n+1],让索引整体偏移一位,把索引 0 留出来作为 base case 表示空串,然后定义 dp[i+1][j+1] 存储 s1[0..i]s2[0..j] 的编辑距离

4、为什么动态规划遍历 dp 数组的方式五花八门,有的正着遍历,有的倒着遍历,有的斜着遍历。

重点掌握两点:

1、遍历的过程中,所需的状态必须是已经计算出来的

2、遍历结束后,存储结果的那个位置必须已经被计算出来

相关推荐
一只爱打拳的程序猿9 分钟前
【Spring】更加简单的将对象存入Spring中并使用
java·后端·spring
杨荧10 分钟前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
minDuck12 分钟前
ruoyi-vue集成tianai-captcha验证码
java·前端·vue.js
yannan2019031317 分钟前
【算法】(Python)动态规划
python·算法·动态规划
为将者,自当识天晓地。31 分钟前
c++多线程
java·开发语言
daqinzl39 分钟前
java获取机器ip、mac
java·mac·ip
激流丶1 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
Themberfue1 小时前
Java多线程详解⑤(全程干货!!!)线程安全问题 || 锁 || synchronized
java·开发语言·线程·多线程·synchronized·
让学习成为一种生活方式1 小时前
R包下载太慢安装中止的解决策略-R语言003
java·数据库·r语言
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin