day6_动态规划1

动态规划

一、动态规划解题套路框架

动态规划问题性质

1.暴力递归

引出 重叠子问题

2.使用"备忘录"

目的:重叠子问题(使用数组或哈希表)

带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和常见的动态规划解法已经差不多了,只不过这种解法是「自顶向下」进行「递归」求解,我们++更常见的动态规划代码是「自底向上」进行「递推」求解++。

3.自底向上

啥叫「自底向上」?反过来,我们直接从最底下、最简单、问题规模最小、已知结果的 f(1)f(2)(base case)开始往上推,直到推到我们想要的答案 f(20)。这就是「递推」的思路,这也是++动态规划一般都脱离了递归,而是由循环迭代完成计算的原因++。

4.状态转移方程

f(n) 的函数参数会不断变化,所以你把参数 n 想做一个状态,这个状态 n 是由状态 n - 1 和状态 n - 2 转移(相加)而来,这就叫状态转移,仅此而已。

状态转移方程直接代表着暴力解法。

千万不要看不起暴力解,动态规划问题最困难的就是写出这个暴力解,即状态转移方程

只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。

5.细节优化:

一般是动态规划问题的最后一步优化,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试缩小 DP table 的大小,只记录必要的数据,从而降低空间复杂度

例题1,零钱兑换

带备忘录的递归解法

java 复制代码
class Solution {
    int[] memo;

    int coinChange(int[] coins, int amount) {
        memo = new int[amount + 1];
        // 备忘录初始化为一个不会被取到的特殊值,代表还未被计算
        Arrays.fill(memo, -666);

        return dp(coins, amount);
    }

    int dp(int[] coins, int amount) {
        if (amount == 0) return 0;
        if (amount < 0) return -1;
        // 查备忘录,防止重复计算
        if (memo[amount] != -666)
            return memo[amount];

        int res = Integer.MAX_VALUE;
        for (int coin : coins) {
            // 计算子问题的结果
            int subProblem = dp(coins, amount - coin);
            // 子问题无解则跳过
            if (subProblem == -1) continue;
            // 在子问题中选择最优解,然后加一
            res = Math.min(res, subProblem + 1);
        }
        // 把计算结果存入备忘录
        memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;
        return memo[amount];
    }
}

动态规划解法

java 复制代码
class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        // 数组大小为 amount + 1,初始值也为 amount + 1
        Arrays.fill(dp, amount + 1);

        // base case
        dp[0] = 0;
        // 外层 for 循环在遍历所有状态的所有取值
        for (int i = 0; i < dp.length; i++) {
            // 内层 for 循环在求所有选择的最小值
            for (int coin : coins) {
                // 子问题无解,跳过
                if (i - coin < 0) {
                    continue;
                }
                dp[i] = Math.min(dp[i], 1 + dp[i - coin]);
            }
        }
        return (dp[amount] == amount + 1) ? -1 : dp[amount];
    }
}

总结

计算机解决问题其实没有任何特殊的技巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考"如何穷举",然后再追求"如何聪明地穷举"。

列出状态转移方程,就是在解决"如何穷举"的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求"如何聪明地穷举"。用空间换时间的思路,是降低时间复杂度的不二法门,除此之外,试问,还能玩出啥花活?

一、动态规划设计:最长递增子序列

参考链接动态规划设计:最长递增子序列 | labuladong 的算法笔记

设计状态转移方程

借助经典的「最长递增子序列问题」来讲一讲设计动态规划的通用技巧:数学归纳思想

1.最长递增子序列问题(动态规划)
java 复制代码
int lengthOfLIS(int[] nums) {
    // 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度
    int[] dp = new int[nums.length];
    // base case:dp 数组全都初始化为 1
    Arrays.fill(dp, 1);
    for (int i = 0; i < nums.length; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) 
                dp[i] = Math.max(dp[i], dp[j] + 1);
        }
    }
    
    int res = 0;
    for (int i = 0; i < dp.length; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}
2.最长递增子序列问题(动态规划+二分查找)
java 复制代码
int lengthOfLIS(int[] nums) {
    int[] top = new int[nums.length];
    // 牌堆数初始化为 0
    int piles = 0;
    for (int i = 0; i < nums.length; i++) {
        // 要处理的扑克牌
        int poker = nums[i];

        /***** 搜索左侧边界的二分查找 *****/
        int left = 0, right = piles;
        while (left < right) {
            int mid = (left + right) / 2;
            if (top[mid] > poker) {
                right = mid;
            } else if (top[mid] < poker) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        /*********************************/
        
        // 没找到合适的牌堆,新建一堆
        if (left == piles) piles++;
        // 把这张牌放到牌堆顶
        top[left] = poker;
    }
    // 牌堆数就是 LIS 长度
    return piles;
}
3. 354.俄罗斯套娃信封问题(hard)

//在二分查找的基础上解决,只使用动态规划会超出时间限制

  1. 将宽度升序排序,在宽度相同的基础上进行降序排序

    因为宽度或高度有一个相同就不能嵌套,所以,为了保证结果不会出现两个宽度相同的信封而将高度降序

  2. 只根据处理后的高度进行最长递增子序列问题解决

java 复制代码
class Solution {
// envelopes = [[w, h], [w, h]...]
public int maxEnvelopes(int[][] envelopes) {
    int n = envelopes.length;
    // 按宽度升序排列,如果宽度一样,则按高度降序排列
    Arrays.sort(envelopes, (int[] a, int[] b) -> {
        return a[0] == b[0] ? 
            b[1] - a[1] : a[0] - b[0];
    });
    // 对高度数组寻找 LIS
    int[] height = new int[n];
    for (int i = 0; i < n; i++)
        height[i] = envelopes[i][1];

    return lengthOfLIS(height);
}

int lengthOfLIS(int[] nums) {
    int[] top = new int[nums.length];
    // 牌堆数初始化为 0
    int piles = 0;
    for (int i = 0; i < nums.length; i++) {
        // 要处理的扑克牌
        int poker = nums[i];

        /***** 搜索左侧边界的二分查找 *****/
        int left = 0, right = piles;
        while (left < right) {
            int mid = (left + right) / 2;
            if (top[mid] > poker) {
                right = mid;
            } else if (top[mid] < poker) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        /*********************************/
        
        // 没找到合适的牌堆,新建一堆
        if (left == piles) piles++;
        // 把这张牌放到牌堆顶
        top[left] = poker;
    }
    // 牌堆数就是 LIS 长度
    return piles;
}

}

二、最优子结构原理和dp数组遍历方向

重点

1、到底什么才叫「最优子结构」,和动态规划什么关系。

子问题之间独立,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的

动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

2、如何判断一个问题是动态规划问题,即如何看出是否存在重叠子问题。

求最值,抽象出递归框架,如果达到某个状态可以由不同的子状态组成,那么这个问题就存在重叠子问题

3、为什么经常看到将 dp 数组的大小设置为 n + 1 而不是 n

因为递归一般是使用方法,而dp一般使用数组结合for循环进行计算无法定义 base case

  1. dp 函数的定义,dp(s1, i, s2, j) 计算 s1[0..i]s2[0..j] 的编辑距离,那么 i, j 等于 -1 时代表空串的 base case,所以函数开头处理了这两种特殊情况。
  2. 再看 dp 数组,你当然也可以定义 dp[i][j] 存储 s1[0..i]s2[0..j] 的编辑距离,但问题是 base case 怎么搞?索引怎么能是 -1 呢?
  3. 所以我们把 dp 数组初始化为 int[m+1][n+1],让索引整体偏移一位,把索引 0 留出来作为 base case 表示空串,然后定义 dp[i+1][j+1] 存储 s1[0..i]s2[0..j] 的编辑距离

4、为什么动态规划遍历 dp 数组的方式五花八门,有的正着遍历,有的倒着遍历,有的斜着遍历。

重点掌握两点:

1、遍历的过程中,所需的状态必须是已经计算出来的

2、遍历结束后,存储结果的那个位置必须已经被计算出来

相关推荐
qq_124987075321 小时前
基于Java Web的城市花园小区维修管理系统的设计与实现(源码+论文+部署+安装)
java·开发语言·前端·spring boot·spring·毕业设计·计算机毕业设计
h7ml21 小时前
查券返利机器人的OCR识别集成:Java Tesseract+OpenCV优化图片验证码的自动解析方案
java·机器人·ocr
野犬寒鸦21 小时前
从零起步学习并发编程 || 第五章:悲观锁与乐观锁的思想与实现及实战应用与问题
java·服务器·数据库·学习·语言模型
Volunteer Technology21 小时前
Sentinel的限流算法
java·python·算法
岁岁种桃花儿21 小时前
SpringCloud从入门到上天:Nacos做微服务注册中心
java·spring cloud·微服务
jdyzzy21 小时前
什么是 JIT 精益生产模式?它与传统的生产管控方式有何不同?
java·大数据·人工智能·jit
Chasmれ21 小时前
Spring Boot 1.x(基于Spring 4)中使用Java 8实现Token
java·spring boot·spring
汤姆yu21 小时前
2026基于springboot的在线招聘系统
java·spring boot·后端
计算机学姐1 天前
基于SpringBoot的校园社团管理系统
java·vue.js·spring boot·后端·spring·信息可视化·推荐算法
葵花楹1 天前
【算法题】【动态规划2】【背包动态规划】
算法·动态规划