LLM实战:LLM微调加速神器-Unsloth + LLama3

1. 背景

五一结束后,本qiang~又投入了LLM的技术海洋中,本期将给大家带来LLM微调神器:Unsloth。

正如Unsloth官方的对外宣贯:Easily finetune & train LLMs; Get faster with unsloth。微调训练LLM,可以显著提升速度,其次显存占用也会显著减少。

但有一点需要说明:unsloth目前开源部分只支持单机版微调,更高效微调只能交费使用unsloth pro。

2. Unsloth简介

2.1 主要特性

(1) 所有的内核均以OpenAI的Triton语言实现,并且手动实现反向传播引擎。Triton语言是面向LLM训练加速。

(2) 准确率0损失,没有近似方法,方法完全一致。

(3) 硬件层面无需变动。支持18年之后的Nvidia GPU(V100, T4, Titan V, RTX20,30,40x, A100, H100, L40等,GTX1070,1080也支撑,但比较慢),Cuda最低兼容版本是7.0

(4) 通过WSL适用于Linux和Windows

(5) 基于bisandbytes包,支持4bit和16bit的 QLoRA/LoRA微调

(6) 开源代码有5倍的训练效率提升, Unsloth Pro可以提升至30倍

2.2 目前支撑的模型

由于底层算子需要使用triton重写,因此部分开源模型的适配工作周期可能较长。当前unsloth支持的模型包含Qwen 1.5(7B, 14B, 32B, 72B), Llama3-8B, Mistral-7B, Gemma-7B, ORPO, DPO Zephyr, Phi-3(3.8B), TinyLlama

2.3 模型加速效果

Qwen1.5-7B的集成是由Firefly作者封装并验证,性能提升30%+,显卡减少40%+,详见地址

2.4 安装教程

bash 复制代码
conda create --name unsloth_env python=3.10

conda activate unsloth_env

conda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers

pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

pip install --no-deps trl peft accelerate bitsandbytes

3. 实战

本着眼过千遍不如手过一遍的宗旨,本qiang~针对Unsloth做了一个对比实现。对比的实验环境分别为:P40, A40, A800,对比的模型使用的是出锅热乎的Llama3(8B)。

3.1 比对维度

|---------|-----------------------------|
| 维度 | 说明 |
| 显卡 | 是否支持bf16 |
| 最大文本长度 | max_seq_length |
| 批次大小 | per_device_train_batch_size |
| 梯度累加步长 | gradient_accumulation_steps |
| 秩 | LoRA的rank |
| dropout | lora_droput |

3.2 源码

python 复制代码
from unsloth import FastLanguageModel
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import TrainingArguments, TextStreamer, AutoModelForCausalLM, set_seed, AutoTokenizer, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
import gc

set_seed(42)

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

    ### Instruction:
    {}

    ### Input:
    {}

    ### Response:
    {}"""


def train_unsloth(dtype,
                  max_seq_length,
                  per_device_train_batch_size, 
                  gradient_accumulation_steps, 
                  rank,  
                  lora_alpha=16, 
                  lora_dropout=0, 
                  max_steps=50, 
                  save_steps=50,
                  seed=42,
                  warmup_steps=5,
                  learning_rate=2e-4,
                  logging_steps=5):
	"""
	使用unsloth进行微调训练
	"""
    print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')
    load_in_4bit = True

    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name='pretrain_models/llama/llama3-8B-Instruct',
        max_seq_length=max_seq_length,
        dtype=dtype,
        load_in_4bit=load_in_4bit
    )

    model = FastLanguageModel.get_peft_model(
        model,
        r = rank,
        target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
        lora_alpha=lora_alpha,
        lora_dropout=lora_dropout,
        bias='none',
        use_gradient_checkpointing=True,
        random_state=seed,
        use_rslora=False
    )

    EOS_TOKEN = tokenizer.eos_token

    def formatting_prompts_func(examples):
        instructions = examples["instruction"]
        inputs       = examples["input"]
        outputs      = examples["output"]
        texts = []
        for instruction, input, output in zip(instructions, inputs, outputs):
            # Must add EOS_TOKEN, otherwise your generation will go on forever!
            text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
            texts.append(text)
        return { "text" : texts}
    pass


    dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
    dataset = dataset.map(formatting_prompts_func, batched = True)

    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=max_seq_length,
        packing=False,
        args = TrainingArguments(
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=warmup_steps,
            learning_rate=learning_rate,
            fp16 = not torch.cuda.is_bf16_supported(),
            bf16 = torch.cuda.is_bf16_supported(),
            logging_steps=logging_steps,
            optim='adamw_8bit',
            weight_decay=0.01,
            lr_scheduler_type='linear',
            seed=seed,
            output_dir='output/llame3-8b-instruct-unsloth',
            save_steps=save_steps,
            max_steps=max_steps
        )
    )

    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)
    print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")

    trainer_stats = trainer.train()

    used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    used_memory_for_lora = round(used_memory - start_gpu_memory)
    used_percentage = round(used_memory/max_memory*100, 3)
    lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
    print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
    print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
    print(f"Peak reserved memory = {used_memory} GB.")
    print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
    print(f"Peak reserved memory % of max memory = {used_percentage} %.")
    print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")

    model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local saving
    tokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")

    # model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)  # Merge to 16bit
    # model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) # Merge to 4bit
    # model.save_pretrained_merged("model", tokenizer, save_method = "lora",) # Just LoRA adapters
    # model.save_pretrained_gguf("model", tokenizer,)   # Save to 8bit Q8_0
    # model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")   # Save to 16bit GGUF
    # model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")    # Save to q4_k_m GGUF
    del model
    del tokenizer

    torch.cuda.empty_cache()
    for _ in range(3):
        gc.collect()

def train_trans(dtype, 
                max_seq_length, 
                per_device_train_batch_size, 
                gradient_accumulation_steps, 
                rank, 
                lora_alpha=16, 
                lora_dropout=0, 
                max_steps=50, 
                save_steps=50,
                seed=42,
                warmup_steps=5,
                learning_rate=2e-4,
                logging_steps=5):
	"""
	使用transformers进行微调训练
	"""
    print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')

    model_path = 'pretrain_models/llama/llama3-8B-Instruct'
    
    tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side='right', model_max_length=8192)
    tokenizer.add_special_tokens({"pad_token" : '<|reserved_special_token_250|>'})
    tokenizer.pad_token = '<|reserved_special_token_250|>'

    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=dtype,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        torch_dtype=dtype,
        quantization_config=quantization_config
    )

    model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
    model.enable_input_require_grads()

    config = LoraConfig(
        r=rank,
        lora_alpha=lora_alpha,
        target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
        use_rslora=False
    )

    model = get_peft_model(model, peft_config=config)
    model.gradient_checkpointing_enable()

    EOS_TOKEN = tokenizer.eos_token


    def formatting_prompts_func(examples):
        instructions = examples["instruction"]
        inputs       = examples["input"]
        outputs      = examples["output"]
        texts = []
        for instruction, input, output in zip(instructions, inputs, outputs):
            # Must add EOS_TOKEN, otherwise your generation will go on forever!
            text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
            texts.append(text)
        return { "text" : texts}
    pass


    dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
    dataset = dataset.map(formatting_prompts_func, batched = True,)

    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=max_seq_length,
        packing=False,
        args = TrainingArguments(
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=warmup_steps,
            learning_rate=learning_rate,
            fp16 = not torch.cuda.is_bf16_supported(),
            bf16 = torch.cuda.is_bf16_supported(),
            logging_steps=logging_steps,
            optim='adamw_8bit',
            weight_decay=0.01,
            lr_scheduler_type='linear',
            seed=seed,
            output_dir='output/llame3-8b-instruct-unsloth',
            save_steps=save_steps,
            max_steps=max_steps
        )
    )

    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)
    print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")

    trainer_stats = trainer.train()

    used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    used_memory_for_lora = round(used_memory - start_gpu_memory)
    used_percentage = round(used_memory/max_memory*100, 3)
    lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
    print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
    print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
    print(f"Peak reserved memory = {used_memory} GB.")
    print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
    print(f"Peak reserved memory % of max memory = {used_percentage} %.")
    print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")

    model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local saving
    tokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")
    
    del model
    del tokenizer

    torch.cuda.empty_cache()
    for _ in range(3):
        gc.collect()

def infer():

    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name='output/llame3-8b-instruct-unsloth-lora',
        max_seq_length=2048,
        dtype=torch.float16,
        load_in_4bit=True
    )

    # 2x的速率进行推理
    FastLanguageModel.for_inference(model)

    inputs = tokenizer([alpaca_prompt.format('Continue the fibonnaci sequence.', '1, 1, 2, 3, 5, 8', '')], return_tensors = "pt").to('cuda')
    outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True)
    print(tokenizer.batch_decode(outputs))

    text_streamer = TextStreamer(tokenizer)
    outputs = model.generate(**inputs, max_new_tokens=1024, streamer=text_streamer)
    print(tokenizer.batch_decode(outputs))


if __name__ == '__main__':

    train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=16, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)
    
    train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)

4 实验结果

4.1 P40

4.2 A40

4.3 A800

4.4 结论

针对于llama3-8B进行unsloth训练,与基于transformers框架训练进行比对,结论如下:

(1) 集成unsloth后,显卡占用确实更少,训练效率确实更快,不管是哪种维度。

(2) P40增加batch_size后,显卡的内存占用提升,但训练的时间也更长,说明P40针对大批次的数据处理,性能会降低; 但A40, A800增加batch_size后,显卡内存占用虽然提升,但训练的时间更短。

(3) A800的batch_size为1时,训练效率不如A40,当batch_size增加到16时,A800的训练效率比A40快接近一倍。因此,A800更适合处理大批次的场景,对于小batch_size,杀鸡不能用牛刀。

5. 总结

一句话足矣~

本文主要是使用unsloth框架针对llama3的高效微调实验,提供了详细的对比代码以及对比分析结果。

之后会写一篇关于Qwen1.5的对比实验,敬请期待~

6. 参考

  1. unsloth: https://github.com/unslothai/unsloth

  2. Qwen1.5+Unsloth: Support Qwen2 by yangjianxin1 · Pull Request #428 · unslothai/unsloth · GitHub

相关推荐
AITIME论道43 分钟前
论文解读 | NeurIPS'24 IRCAN:通过识别和重新加权上下文感知神经元来减轻大语言模型生成中的知识冲突...
人工智能·语言模型·自然语言处理
jerry6091 小时前
NLP CH10 问答系统复习
自然语言处理
小嗷犬1 小时前
【论文笔记】NEFTune: Noisy Embeddings Improve Instruction Finetuning
论文阅读·人工智能·深度学习·神经网络·语言模型·大模型
小嗷犬1 小时前
【论文笔记】QLoRA: Efficient Finetuning of Quantized LLMs
论文阅读·人工智能·深度学习·神经网络·语言模型·大模型·微调
XianxinMao4 小时前
理解PDF文档的力量:使用LLM与RAG的本地应用
人工智能·语言模型·自然语言处理
小嗷犬6 小时前
【论文笔记】LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
论文阅读·人工智能·深度学习·神经网络·语言模型·大模型
三月七(爱看动漫的程序员)6 小时前
Branch-Solve-Merge Improves Large Language Model Evaluation and Generation
人工智能·深度学习·学习·语言模型·自然语言处理
XianxinMao9 小时前
Compression Techniques for LLMs
人工智能·语言模型
jazz_bin12 小时前
人工智能安全——大语言模型遗忘学习(LLM unlearning)与多目标优化算法
人工智能·算法·语言模型·unlearning·多目标优化·人工智能安全
大模型之路13 小时前
Chain of Agents(COA):大型语言模型在长文本任务中的协作新范式
人工智能·语言模型·agent·ai agent·ai代理