LLM实战:LLM微调加速神器-Unsloth + LLama3

1. 背景

五一结束后,本qiang~又投入了LLM的技术海洋中,本期将给大家带来LLM微调神器:Unsloth。

正如Unsloth官方的对外宣贯:Easily finetune & train LLMs; Get faster with unsloth。微调训练LLM,可以显著提升速度,其次显存占用也会显著减少。

但有一点需要说明:unsloth目前开源部分只支持单机版微调,更高效微调只能交费使用unsloth pro。

2. Unsloth简介

2.1 主要特性

(1) 所有的内核均以OpenAI的Triton语言实现,并且手动实现反向传播引擎。Triton语言是面向LLM训练加速。

(2) 准确率0损失,没有近似方法,方法完全一致。

(3) 硬件层面无需变动。支持18年之后的Nvidia GPU(V100, T4, Titan V, RTX20,30,40x, A100, H100, L40等,GTX1070,1080也支撑,但比较慢),Cuda最低兼容版本是7.0

(4) 通过WSL适用于Linux和Windows

(5) 基于bisandbytes包,支持4bit和16bit的 QLoRA/LoRA微调

(6) 开源代码有5倍的训练效率提升, Unsloth Pro可以提升至30倍

2.2 目前支撑的模型

由于底层算子需要使用triton重写,因此部分开源模型的适配工作周期可能较长。当前unsloth支持的模型包含Qwen 1.5(7B, 14B, 32B, 72B), Llama3-8B, Mistral-7B, Gemma-7B, ORPO, DPO Zephyr, Phi-3(3.8B), TinyLlama

2.3 模型加速效果

Qwen1.5-7B的集成是由Firefly作者封装并验证,性能提升30%+,显卡减少40%+,详见地址

2.4 安装教程

bash 复制代码
conda create --name unsloth_env python=3.10

conda activate unsloth_env

conda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers

pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

pip install --no-deps trl peft accelerate bitsandbytes

3. 实战

本着眼过千遍不如手过一遍的宗旨,本qiang~针对Unsloth做了一个对比实现。对比的实验环境分别为:P40, A40, A800,对比的模型使用的是出锅热乎的Llama3(8B)。

3.1 比对维度

|---------|-----------------------------|
| 维度 | 说明 |
| 显卡 | 是否支持bf16 |
| 最大文本长度 | max_seq_length |
| 批次大小 | per_device_train_batch_size |
| 梯度累加步长 | gradient_accumulation_steps |
| 秩 | LoRA的rank |
| dropout | lora_droput |

3.2 源码

python 复制代码
from unsloth import FastLanguageModel
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import TrainingArguments, TextStreamer, AutoModelForCausalLM, set_seed, AutoTokenizer, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
import gc

set_seed(42)

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

    ### Instruction:
    {}

    ### Input:
    {}

    ### Response:
    {}"""


def train_unsloth(dtype,
                  max_seq_length,
                  per_device_train_batch_size, 
                  gradient_accumulation_steps, 
                  rank,  
                  lora_alpha=16, 
                  lora_dropout=0, 
                  max_steps=50, 
                  save_steps=50,
                  seed=42,
                  warmup_steps=5,
                  learning_rate=2e-4,
                  logging_steps=5):
	"""
	使用unsloth进行微调训练
	"""
    print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')
    load_in_4bit = True

    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name='pretrain_models/llama/llama3-8B-Instruct',
        max_seq_length=max_seq_length,
        dtype=dtype,
        load_in_4bit=load_in_4bit
    )

    model = FastLanguageModel.get_peft_model(
        model,
        r = rank,
        target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
        lora_alpha=lora_alpha,
        lora_dropout=lora_dropout,
        bias='none',
        use_gradient_checkpointing=True,
        random_state=seed,
        use_rslora=False
    )

    EOS_TOKEN = tokenizer.eos_token

    def formatting_prompts_func(examples):
        instructions = examples["instruction"]
        inputs       = examples["input"]
        outputs      = examples["output"]
        texts = []
        for instruction, input, output in zip(instructions, inputs, outputs):
            # Must add EOS_TOKEN, otherwise your generation will go on forever!
            text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
            texts.append(text)
        return { "text" : texts}
    pass


    dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
    dataset = dataset.map(formatting_prompts_func, batched = True)

    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=max_seq_length,
        packing=False,
        args = TrainingArguments(
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=warmup_steps,
            learning_rate=learning_rate,
            fp16 = not torch.cuda.is_bf16_supported(),
            bf16 = torch.cuda.is_bf16_supported(),
            logging_steps=logging_steps,
            optim='adamw_8bit',
            weight_decay=0.01,
            lr_scheduler_type='linear',
            seed=seed,
            output_dir='output/llame3-8b-instruct-unsloth',
            save_steps=save_steps,
            max_steps=max_steps
        )
    )

    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)
    print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")

    trainer_stats = trainer.train()

    used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    used_memory_for_lora = round(used_memory - start_gpu_memory)
    used_percentage = round(used_memory/max_memory*100, 3)
    lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
    print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
    print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
    print(f"Peak reserved memory = {used_memory} GB.")
    print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
    print(f"Peak reserved memory % of max memory = {used_percentage} %.")
    print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")

    model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local saving
    tokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")

    # model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)  # Merge to 16bit
    # model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) # Merge to 4bit
    # model.save_pretrained_merged("model", tokenizer, save_method = "lora",) # Just LoRA adapters
    # model.save_pretrained_gguf("model", tokenizer,)   # Save to 8bit Q8_0
    # model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")   # Save to 16bit GGUF
    # model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")    # Save to q4_k_m GGUF
    del model
    del tokenizer

    torch.cuda.empty_cache()
    for _ in range(3):
        gc.collect()

def train_trans(dtype, 
                max_seq_length, 
                per_device_train_batch_size, 
                gradient_accumulation_steps, 
                rank, 
                lora_alpha=16, 
                lora_dropout=0, 
                max_steps=50, 
                save_steps=50,
                seed=42,
                warmup_steps=5,
                learning_rate=2e-4,
                logging_steps=5):
	"""
	使用transformers进行微调训练
	"""
    print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')

    model_path = 'pretrain_models/llama/llama3-8B-Instruct'
    
    tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side='right', model_max_length=8192)
    tokenizer.add_special_tokens({"pad_token" : '<|reserved_special_token_250|>'})
    tokenizer.pad_token = '<|reserved_special_token_250|>'

    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=dtype,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        llm_int8_threshold=6.0,
        llm_int8_has_fp16_weight=False,
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        torch_dtype=dtype,
        quantization_config=quantization_config
    )

    model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
    model.enable_input_require_grads()

    config = LoraConfig(
        r=rank,
        lora_alpha=lora_alpha,
        target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
        use_rslora=False
    )

    model = get_peft_model(model, peft_config=config)
    model.gradient_checkpointing_enable()

    EOS_TOKEN = tokenizer.eos_token


    def formatting_prompts_func(examples):
        instructions = examples["instruction"]
        inputs       = examples["input"]
        outputs      = examples["output"]
        texts = []
        for instruction, input, output in zip(instructions, inputs, outputs):
            # Must add EOS_TOKEN, otherwise your generation will go on forever!
            text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
            texts.append(text)
        return { "text" : texts}
    pass


    dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
    dataset = dataset.map(formatting_prompts_func, batched = True,)

    trainer = SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=max_seq_length,
        packing=False,
        args = TrainingArguments(
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=warmup_steps,
            learning_rate=learning_rate,
            fp16 = not torch.cuda.is_bf16_supported(),
            bf16 = torch.cuda.is_bf16_supported(),
            logging_steps=logging_steps,
            optim='adamw_8bit',
            weight_decay=0.01,
            lr_scheduler_type='linear',
            seed=seed,
            output_dir='output/llame3-8b-instruct-unsloth',
            save_steps=save_steps,
            max_steps=max_steps
        )
    )

    gpu_stats = torch.cuda.get_device_properties(0)
    start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)
    print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
    print(f"{start_gpu_memory} GB of memory reserved.")

    trainer_stats = trainer.train()

    used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)
    used_memory_for_lora = round(used_memory - start_gpu_memory)
    used_percentage = round(used_memory/max_memory*100, 3)
    lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
    print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
    print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
    print(f"Peak reserved memory = {used_memory} GB.")
    print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
    print(f"Peak reserved memory % of max memory = {used_percentage} %.")
    print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")

    model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local saving
    tokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")
    
    del model
    del tokenizer

    torch.cuda.empty_cache()
    for _ in range(3):
        gc.collect()

def infer():

    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name='output/llame3-8b-instruct-unsloth-lora',
        max_seq_length=2048,
        dtype=torch.float16,
        load_in_4bit=True
    )

    # 2x的速率进行推理
    FastLanguageModel.for_inference(model)

    inputs = tokenizer([alpaca_prompt.format('Continue the fibonnaci sequence.', '1, 1, 2, 3, 5, 8', '')], return_tensors = "pt").to('cuda')
    outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True)
    print(tokenizer.batch_decode(outputs))

    text_streamer = TextStreamer(tokenizer)
    outputs = model.generate(**inputs, max_new_tokens=1024, streamer=text_streamer)
    print(tokenizer.batch_decode(outputs))


if __name__ == '__main__':

    train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)
    train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=16, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)
    
    train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)
    train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)

4 实验结果

4.1 P40

4.2 A40

4.3 A800

4.4 结论

针对于llama3-8B进行unsloth训练,与基于transformers框架训练进行比对,结论如下:

(1) 集成unsloth后,显卡占用确实更少,训练效率确实更快,不管是哪种维度。

(2) P40增加batch_size后,显卡的内存占用提升,但训练的时间也更长,说明P40针对大批次的数据处理,性能会降低; 但A40, A800增加batch_size后,显卡内存占用虽然提升,但训练的时间更短。

(3) A800的batch_size为1时,训练效率不如A40,当batch_size增加到16时,A800的训练效率比A40快接近一倍。因此,A800更适合处理大批次的场景,对于小batch_size,杀鸡不能用牛刀。

5. 总结

一句话足矣~

本文主要是使用unsloth框架针对llama3的高效微调实验,提供了详细的对比代码以及对比分析结果。

之后会写一篇关于Qwen1.5的对比实验,敬请期待~

6. 参考

  1. unsloth: https://github.com/unslothai/unsloth

  2. Qwen1.5+Unsloth: Support Qwen2 by yangjianxin1 · Pull Request #428 · unslothai/unsloth · GitHub

相关推荐
神一样的老师10 小时前
讯飞星火编排创建智能体学习(四):网页读取
人工智能·学习·语言模型·自然语言处理
Hiweir ·12 小时前
NLP任务之文本分类(情感分析)
人工智能·自然语言处理·分类·huggingface
sp_fyf_202414 小时前
[大语言模型-论文精读] 更大且更可指导的语言模型变得不那么可靠
人工智能·深度学习·神经网络·搜索引擎·语言模型·自然语言处理
山川而川-R16 小时前
Windows安装ollama和AnythingLLM
人工智能·python·语言模型·自然语言处理
我爱学Python!18 小时前
基于 LangChain 的自动化测试用例的生成与执行
人工智能·自然语言处理·langchain·自动化·llm·测试用例·大语言模型
deephub18 小时前
闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨
人工智能·python·语言模型·rag·嵌入模型
sp_fyf_202419 小时前
[大语言模型-论文精读] 利用多样性进行大型语言模型预训练中重要数据的选择
人工智能·深度学习·神经网络·语言模型·自然语言处理
sp_fyf_202419 小时前
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
人工智能·神经网络·算法·语言模型·自然语言处理
萱仔学习自我记录19 小时前
常用大语言模型简单介绍
人工智能·python·自然语言处理·nlp
龙的爹233319 小时前
论文翻译 | LLaMA-Adapter :具有零初始化注意的语言模型的有效微调
人工智能·gpt·语言模型·自然语言处理·nlp·prompt·llama