矩阵的对称正定性判决(复习)

文章目录

本科学的数学知识忘的太快了

如何判断一个实矩阵是否是对称正定

在线性代数中,一个实对称矩阵是否为正定可以通过以下方法判断:

  1. 对称性: 首先,确认矩阵是否对称,即矩阵的转置是否等于其本身。

  2. 特征值检查: 对称矩阵的特征值都是实数,可以通过计算所有的特征值来检查矩阵的正定性。如果所有特征值都大于零,则矩阵是正定的;如果所有特征值都小于零,则矩阵是负定的;如果特征值有正有负,则矩阵不是正定的。

  3. 主子式检查: 对于一个实对称矩阵,可以通过检查所有的主子式(矩阵的各阶行列式)来判断其正定性。如果所有主子式的值都大于零,则矩阵是正定的。

  4. 正定性定理: Sylvester定理指出,对于一个n阶实对称矩阵A,当且仅当A的所有n阶主子式大于零时,A是正定的。

  5. Cholesky分解: 正定矩阵可以通过Cholesky分解分解为下三角矩阵乘以其转置的形式。因此,如果一个矩阵可以进行Cholesky分解,且分解后的下三角矩阵的对角线上的元素都大于零,则该矩阵是正定的。

以上方法中,特征值检查和主子式检查是最常用的方法之一,尤其是在实际计算中。Cholesky分解则在解线性方程组等问题中更为实用。

相关推荐
春日见2 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
y***86697 小时前
C机器学习.NET生态库应用
人工智能·机器学习
ChoSeitaku7 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus8 小时前
矩阵的左乘和右乘有什么区别
线性代数·矩阵
西西弗Sisyphus8 小时前
满秩分解是怎么把矩阵分解成了两个满秩的矩阵
线性代数·矩阵·初等矩阵·满秩分解
二川bro8 小时前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
AI科技星8 小时前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法
大千AI助手10 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
我不是QI12 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
luoganttcc15 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶