矩阵的对称正定性判决(复习)

文章目录

本科学的数学知识忘的太快了

如何判断一个实矩阵是否是对称正定

在线性代数中,一个实对称矩阵是否为正定可以通过以下方法判断:

  1. 对称性: 首先,确认矩阵是否对称,即矩阵的转置是否等于其本身。

  2. 特征值检查: 对称矩阵的特征值都是实数,可以通过计算所有的特征值来检查矩阵的正定性。如果所有特征值都大于零,则矩阵是正定的;如果所有特征值都小于零,则矩阵是负定的;如果特征值有正有负,则矩阵不是正定的。

  3. 主子式检查: 对于一个实对称矩阵,可以通过检查所有的主子式(矩阵的各阶行列式)来判断其正定性。如果所有主子式的值都大于零,则矩阵是正定的。

  4. 正定性定理: Sylvester定理指出,对于一个n阶实对称矩阵A,当且仅当A的所有n阶主子式大于零时,A是正定的。

  5. Cholesky分解: 正定矩阵可以通过Cholesky分解分解为下三角矩阵乘以其转置的形式。因此,如果一个矩阵可以进行Cholesky分解,且分解后的下三角矩阵的对角线上的元素都大于零,则该矩阵是正定的。

以上方法中,特征值检查和主子式检查是最常用的方法之一,尤其是在实际计算中。Cholesky分解则在解线性方程组等问题中更为实用。

相关推荐
铅笔侠_小龙虾10 分钟前
深度学习理论推导--最小二乘法
人工智能·深度学习·机器学习
All The Way North-14 分钟前
PyTorch nn.L1Loss 完全指南:MAE 原理、梯度计算与不可导点处理详解
pytorch·深度学习·机器学习·mae损失函数·l1loss损失函数
LDG_AGI14 分钟前
【推荐系统】深度学习训练框架(十三):模型输入——《特征索引》与《特征向量》的边界
人工智能·pytorch·分布式·深度学习·算法·机器学习
亚里随笔39 分钟前
MiniRL:用LLM稳定强化学习的新范式与第一阶近似理论
人工智能·深度学习·机器学习·llm·rlhf·agentic
free-elcmacom43 分钟前
用Python玩转GAN:让AI学会“造假”的艺术
人工智能·python·机器学习
一条破秋裤1 小时前
零样本学习指标
深度学习·学习·机器学习
Michelle80231 小时前
机器学习实战操作手册
人工智能·算法·机器学习
凯子坚持 c1 小时前
体系化AI开发方案:豆包新模型矩阵与PromptPilot自动化调优平台深度解析
人工智能·矩阵·自动化
草莓熊Lotso1 小时前
《算法闯关指南:优选算法--前缀和》--31.连续数组,32.矩阵区域和
c++·线性代数·算法·矩阵
logocode_li1 小时前
面试 LoRA 被问懵?B 矩阵初始化为 0 的原因,大多数人拿目标来回答
人工智能·python·面试·职场和发展·矩阵