矩阵的对称正定性判决(复习)

文章目录

本科学的数学知识忘的太快了

如何判断一个实矩阵是否是对称正定

在线性代数中,一个实对称矩阵是否为正定可以通过以下方法判断:

  1. 对称性: 首先,确认矩阵是否对称,即矩阵的转置是否等于其本身。

  2. 特征值检查: 对称矩阵的特征值都是实数,可以通过计算所有的特征值来检查矩阵的正定性。如果所有特征值都大于零,则矩阵是正定的;如果所有特征值都小于零,则矩阵是负定的;如果特征值有正有负,则矩阵不是正定的。

  3. 主子式检查: 对于一个实对称矩阵,可以通过检查所有的主子式(矩阵的各阶行列式)来判断其正定性。如果所有主子式的值都大于零,则矩阵是正定的。

  4. 正定性定理: Sylvester定理指出,对于一个n阶实对称矩阵A,当且仅当A的所有n阶主子式大于零时,A是正定的。

  5. Cholesky分解: 正定矩阵可以通过Cholesky分解分解为下三角矩阵乘以其转置的形式。因此,如果一个矩阵可以进行Cholesky分解,且分解后的下三角矩阵的对角线上的元素都大于零,则该矩阵是正定的。

以上方法中,特征值检查和主子式检查是最常用的方法之一,尤其是在实际计算中。Cholesky分解则在解线性方程组等问题中更为实用。

相关推荐
SweetCode2 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc15 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
databook37 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪2 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
Uzuki8 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
蹦蹦跳跳真可爱58910 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
云和数据.ChenGuang13 小时前
机器学习之回归算法
人工智能·机器学习·回归
代码骑士13 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
深蓝学院14 小时前
闭环SOTA!北航DiffAD:基于扩散模型实现端到端自动驾驶「多任务闭环统一」
人工智能·机器学习·自动驾驶