1 逻辑回归
1.1 回归划分
广义线性模型家族里,依据因变量不同,可以有如下划分:
(1)如果是连续的,就是多重线性回归。
(2)如果是二项分布,就是逻辑回归。
(3)如果是泊松(Poisson)分布,就是泊松回归。
(4)如果是负二项分布,就是负二项回归。
(5)逻辑回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的逻辑回归。
1.2 逻辑回归适用性
逻辑回归可用于以下几个方面:
(1)用于概率预测。用于可能性预测时,得到的结果有可比性。比如根据模型进而预测在不同的自变量情况下,发生某病或某种情况的概率有多大。
(2)用于分类。实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。进行分类时,仅需要设定一个阈值即可,可能性高于阈值是一类,低于阈值是另一类。
(3)寻找危险因素。寻找某一疾病的危险因素等。
(4)仅能用于线性问题。只有当目标和特征是线性关系时,才能用逻辑回归。在应用逻辑回归时注意两点:一是当知道模型是非线性时,不适用逻辑回归;二是当使用逻辑回归时,应注意选择和目标为线性关系的特征。
(5)各特征之间不需要满足条件独立假设,但各个特征的贡献独立计算。
1.3 生成模型和判别模型的区别
生成模型:由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)(贝叶斯概率)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类。典型的生成模型有朴素贝叶斯,隐马尔科夫模型等
判别模型:由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。这些模型的特点都是输入属性X可以直接得到后验概率P(Y|X),输出条件概率最大的作为最终的类别(对于二分类任务来说,实际得到一个score,当score大于threshold时则为正类,否则为负类)。
举例:
判别式模型举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。
生成式模型举例:利用生成模型是根据山羊的特征首先学习出一个山羊的模型,然后根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到山羊模型中看概率是多少,在放到绵羊模型中看概率是多少,哪个大就是哪个。
联系和区别:
生成方法的特点:上面说到,生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布P(Y,X),而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。
判别方法的特点:判别方法直接学习的是决策函数Y=f(X)或者条件概率分布P(Y|X)。不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。直接面对预测,往往学习的准确率更高。由于直接学习P(Y|X)或P(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。
最后,由生成模型可以得到判别模型,但由判别模型得不到生成模型。
1.4 逻辑回归与朴素贝叶斯有什么区别
逻辑回归与朴素贝叶斯区别有以下几个方面:
(1)逻辑回归是判别模型, 朴素贝叶斯是生成模型,所以生成和判别的所有区别它们都有。
(2)朴素贝叶斯属于贝叶斯,逻辑回归是最大似然,两种概率哲学间的区别。
(3)朴素贝叶斯需要条件独立假设。
(4)逻辑回归需要求特征参数间是线性的。
1.5 线性回归与逻辑回归的区别
线性回归与逻辑回归的区别如下描述:
(1)线性回归的样本的输出,都是连续值,$ y\in (-\infty ,+\infty ) ,而逻辑回归中 ,而逻辑回归中 ,而逻辑回归中y\in (0,1)$,只能取0和1。
(2)对于拟合函数也有本质上的差别:
线性回归: f ( x ) = θ T x = θ 1 x 1 + θ 2 x 2 + . . . + θ n x n f(x)=\theta ^{T}x=\theta _{1}x _{1}+\theta _{2}x _{2}+...+\theta _{n}x _{n} f(x)=θTx=θ1x1+θ2x2+...+θnxn
逻辑回归: f ( x ) = P ( y = 1 ∣ x ; θ ) = g ( θ T x ) f(x)=P(y=1|x;\theta )=g(\theta ^{T}x) f(x)=P(y=1∣x;θ)=g(θTx),其中, g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1
可以看出,线性回归的拟合函数,是对f(x)的输出变量y的拟合,而逻辑回归的拟合函数是对为1类样本的概率的拟合。
那么,为什么要以1类样本的概率进行拟合呢,为什么可以这样拟合呢?
θ T x = 0 \theta ^{T}x=0 θTx=0就相当于是1类和0类的决策边界:
当 θ T x > 0 \theta ^{T}x>0 θTx>0,则y>0.5;若$\theta ^{T}x\rightarrow +\infty ,则 ,则 ,则y \rightarrow 1 $,即y为1类;
当 θ T x < 0 \theta ^{T}x<0 θTx<0,则y<0.5;若$\theta ^{T}x\rightarrow -\infty ,则 ,则 ,则y \rightarrow 0 $,即y为0类;
这个时候就能看出区别,在线性回归中 θ T x \theta ^{T}x θTx为预测值的拟合函数;而在逻辑回归中 θ T x \theta ^{T}x θTx为决策边界。下表2-3为线性回归和逻辑回归的区别。
表2-3 线性回归和逻辑回归的区别
线性回归 | 逻辑回归 | |
---|---|---|
目的 | 预测 | 分类 |
y ( i ) y^{(i)} y(i) | 未知 | (0,1) |
函数 | 拟合函数 | 预测函数 |
参数计算方式 | 最小二乘法 | 极大似然估计 |