(undone) 什么是马尔可夫链?Markov Chain

参考视频1:https://www.bilibili.com/video/BV1ko4y1P7Zv/?spm_id_from=333.337.search-card.all.click\&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频2:https://www.bilibili.com/video/BV1xg4y1K7z4/?spm_id_from=333.788\&vd_source=7a1a0bc74158c6993c7355c5490fc600


如下图所示,马尔可夫链条实际上就是 "状态机",只不过状态机里不同状态之间的边上是 "概率"

马尔可夫链有一个非常好的性质,那就是:所有 next state 都只和 current state 有关

所以,计算概率的时候,条件只有当前状态

一个很自然的想法是:马尔可夫链是否有 "稳态"?

也就是说,当链条足够长时,链条上出现的不同状态是否会收敛于某个比例

经过试验统计,比如 100W 长度的链条,发现确实会收敛于某个比例

那么是否可以通过计算得到 "稳态" 呢?是可以的,如下图,分别是转移矩阵 A,和状态概率矢量 pi

通过让状态概率矢量 pi 和转移矩阵A 相乘,我们可以得到披萨状态的未来概率。(披萨状态用 [0 1 0] 表示)

此时,我们可以把 [0.3 0 0.7] 表示为 pi1,随后用 pi1 x A 来计算 pi2

如果存在稳态,用 pi 表示,那么有 pi x A = pi。此时一看,卧槽,这个 pi 不是特征值为 1 的特征向量嘛?

此时还有另外一个条件:pi 的所有元素加起来必须等于 1,因为每一个元素代表一个东西的概率

于是,有两个等式,如下图

于是,有两个等式,如下图,分别是:

1.pi x A = pi

2.pi[1] + pi[2] + pi[3] = 1

解完这两个等式后,我们得到了下图的内容,就是 "稳态"

如下图,是通过两个式子计算出的 "稳态"。

那么,有可能存在多个 "稳态" 嘛?答案是肯定的,我们只需要看一下是否存在不止一个特征值等于1的特征向量即可


TODO: here

相关推荐
怀川16 分钟前
开源 NamBlog:一个博客外壳下的体验编译器
docker·ai·.net·博客·ddd·graphql·mcp
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (一)序列数据与序列模型
深度学习·ai
爬点儿啥4 小时前
[Ai Agent] 13 用 Streamlit 为 Agents SDK 打造可视化“驾驶舱”
人工智能·ai·状态模式·agent·streamlit·智能体
Pocker_Spades_A5 小时前
openJiuwen 0 基础入门:工作流编排从零到一及深度踩坑指南
ai
Brian Xia5 小时前
从 0 开始手写 AI Agent 框架:nano-agentscope(二)框架搭建
人工智能·python·ai
catoop9 小时前
Claude Skills 核心概念介绍(中英双语)
ai
小糖豆巴拉巴拉9 小时前
AI应用(3)-基础概念的理解
ai
带刺的坐椅10 小时前
灵动如画 —— 初识 Solon Graph Fluent API 编排
java·ai·agent·solon·flow·langgraph
仙魁XAN10 小时前
如何使用即梦AI,快速实现把建筑图转为线稿图,并且实现建筑线稿图第一人称视觉漫游的效果
ai·即梦ai·线稿图·首尾帧图片