(undone) 什么是马尔可夫链?Markov Chain

参考视频1:https://www.bilibili.com/video/BV1ko4y1P7Zv/?spm_id_from=333.337.search-card.all.click\&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频2:https://www.bilibili.com/video/BV1xg4y1K7z4/?spm_id_from=333.788\&vd_source=7a1a0bc74158c6993c7355c5490fc600


如下图所示,马尔可夫链条实际上就是 "状态机",只不过状态机里不同状态之间的边上是 "概率"

马尔可夫链有一个非常好的性质,那就是:所有 next state 都只和 current state 有关

所以,计算概率的时候,条件只有当前状态

一个很自然的想法是:马尔可夫链是否有 "稳态"?

也就是说,当链条足够长时,链条上出现的不同状态是否会收敛于某个比例

经过试验统计,比如 100W 长度的链条,发现确实会收敛于某个比例

那么是否可以通过计算得到 "稳态" 呢?是可以的,如下图,分别是转移矩阵 A,和状态概率矢量 pi

通过让状态概率矢量 pi 和转移矩阵A 相乘,我们可以得到披萨状态的未来概率。(披萨状态用 [0 1 0] 表示)

此时,我们可以把 [0.3 0 0.7] 表示为 pi1,随后用 pi1 x A 来计算 pi2

如果存在稳态,用 pi 表示,那么有 pi x A = pi。此时一看,卧槽,这个 pi 不是特征值为 1 的特征向量嘛?

此时还有另外一个条件:pi 的所有元素加起来必须等于 1,因为每一个元素代表一个东西的概率

于是,有两个等式,如下图

于是,有两个等式,如下图,分别是:

1.pi x A = pi

2.pi[1] + pi[2] + pi[3] = 1

解完这两个等式后,我们得到了下图的内容,就是 "稳态"

如下图,是通过两个式子计算出的 "稳态"。

那么,有可能存在多个 "稳态" 嘛?答案是肯定的,我们只需要看一下是否存在不止一个特征值等于1的特征向量即可


TODO: here

相关推荐
念风零壹9 小时前
AI 时代的前端技术:从系统编程到 JavaScript/TypeScript
前端·ai
懒虫虫~10 小时前
利用自定义Agent-Skill实现项目JDK17升级
ai·skill
AI架构全栈开发实战笔记11 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
大厂资深架构师11 小时前
Spring Cloud Eureka在后端系统中的服务剔除策略
spring·spring cloud·ai·eureka
AI架构全栈开发实战笔记11 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
阿杰学AI12 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
shengnan_wsn14 小时前
【一】【ai基础】【大模型和智能体初识】
ai
nimadan1214 小时前
**AI仿真人剧制作工具2025推荐,解锁沉浸式内容创作新范
ai
aiguangyuan14 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
阿沐的硅基世界16 小时前
OpenClaw记忆层详解
ai