AI写算法:ARIMA

当使用Python进行ARIMA(自回归积分滑动平均模型)建模时,通常会使用statsmodels库。以下是一个简单的ARIMA模型的Python代码示例:

复制代码

python复制代码

|---|-----------------------------------------------------------------------------------------------------------|
| | import pandas as pd |
| | from statsmodels.tsa.arima.model import ARIMA |
| | from statsmodels.tsa.stattools import adfuller |
| | import matplotlib.pyplot as plt |
| | |
| | # 假设你有一个名为'data.csv'的CSV文件,其中包含你要分析的时间序列数据 |
| | # 数据应该有一个名为'date'的日期列和一个名为'value'的值列 |
| | |
| | # 读取数据 |
| | df = pd.read_csv('data.csv', parse_dates=['date'], index_col='date') |
| | |
| | # 确保数据是数值型的 |
| | df['value'] = pd.to_numeric(df['value'], errors='coerce') |
| | |
| | # 检查数据是否有缺失值,并删除它们(如果有的话) |
| | df = df.dropna() |
| | |
| | # 检查数据的平稳性(可选) |
| | # 使用ADF检验(Augmented Dickey-Fuller test) |
| | result = adfuller(df['value']) |
| | print('ADF Statistic: %f' % result[0]) |
| | print('p-value: %f' % result[1]) |
| | |
| | # 如果数据不是平稳的,你可能需要进行差分或其他转换 |
| | # 但为了简单起见,我们假设数据已经是平稳的 |
| | |
| | # 拟合ARIMA模型 |
| | # 这里我们使用ARIMA(1, 1, 0)作为示例,但你应该根据数据选择合适的p, d, q值 |
| | model = ARIMA(df['value'], order=(1, 1, 0)) |
| | model_fit = model.fit(disp=0) |
| | |
| | # 输出模型摘要 |
| | print(model_fit.summary()) |
| | |
| | # 预测未来几个时间点的值(例如,预测接下来的10个值) |
| | n_steps = 10 |
| | forecast, stderr, conf_int = model_fit.forecast(steps=n_steps) |
| | |
| | # 绘制原始数据和预测数据 |
| | plt.figure(figsize=(10, 5)) |
| | plt.plot(df['value'], label='Original') |
| | plt.plot(range(len(df['value']), len(df['value']) + n_steps), forecast, color='red', label='Forecast') |
| | plt.fill_between(range(len(df['value']), len(df['value']) + n_steps), |
| | conf_int[:, 0], |
| | conf_int[:, 1], color='m', alpha=.15) |
| | plt.title('ARIMA Model Forecast') |
| | plt.xlabel('Time') |
| | plt.ylabel('Value') |
| | plt.legend() |
| | plt.show() |

注意:

  1. 你需要根据你的数据和需求调整ARIMA模型的参数(p, d, q)。
  2. 我还包括了一个可选的ADF检验来检查数据的平稳性。如果数据不是平稳的,你可能需要进行差分或其他转换。
  3. 这个示例假设你的数据已经在一个CSV文件中,并且该CSV文件有一个名为'date'的日期列和一个名为'value'的值列。你需要根据你的实际情况修改这些部分。
相关推荐
Hcoco_me7 分钟前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU10 分钟前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝1 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
小和尚同志1 小时前
又来学习提示词啦~13.9k star 的系统提示词集合
人工智能·aigc
昨夜见军贴06161 小时前
IACheck × AI审核重构检测方式:破解工业检测报告频繁返工的根本难题
人工智能·重构
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
好奇龙猫2 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
peixiuhui2 小时前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu