机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
weixin_377634841 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing2 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi2 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
ZZY_dl2 小时前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d3 小时前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心3 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
鲨莎分不晴3 小时前
强化学习第五课 —— A2C & A3C:并行化是如何杀死经验回放
网络·算法·机器学习
爱好读书3 小时前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio3 小时前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能
六行神算API-天璇3 小时前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar