机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
2305_797882092 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能3 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
databook4 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
碳基学AI9 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四12 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能26 分钟前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy27 分钟前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能28 分钟前
什么是 MCP,以及你为什么该关注它
人工智能
誉鏐33 分钟前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
正脉科工 CAE仿真36 分钟前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法