机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
————A12 分钟前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR41 分钟前
每周AI论文速递(251215-251219)
人工智能
weixin_409383121 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
长桥夜波1 小时前
【第二十四周】文献阅读-第一人称下的手势识别(1)
机器学习
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla
余俊晖1 小时前
使用Agent做本体匹配的架构设计
人工智能·语言模型·自然语言处理
图像生成小菜鸟1 小时前
Score Based diffusion model 数学推导
算法·机器学习·概率论
科士威传动1 小时前
方形滚珠导轨如何保障高速定位精度?
人工智能·科技·机器人·自动化·制造
SmartBrain2 小时前
洞察:阿里通义DeepResearch 技术
大数据·人工智能·语言模型·架构
声声codeGrandMaster2 小时前
AI之模型提升
人工智能·pytorch·python·算法·ai