机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
嘻嘻哈哈开森2 分钟前
Java开发工程师转AI工程师
人工智能·后端
rocksun3 分钟前
Agentic AI和平台工程:如何结合
人工智能·devops
孔令飞13 分钟前
关于 LLMOPS 的一些粗浅思考
人工智能·云原生·go
Lecea_L19 分钟前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
2501_9071368223 分钟前
OfficeAI构建本地办公生态:WPS/Word双端联动,数据自由流转
人工智能·word·wps
飞哥数智坊27 分钟前
从零构建自己的MCP Server
人工智能
是Dream呀29 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
项目申报小狂人40 分钟前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python
林泽毅41 分钟前
SwanLab Slack通知插件:让AI训练状态同步更及时
深度学习·机器学习·强化学习
suke1 小时前
一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析
人工智能·程序员