机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
KvPiter1 分钟前
Clawdbot 中文汉化版 接入微信、飞书
人工智能·c#
山顶望月川1 分钟前
2026-2027中国大模型技术演进与产业应用前瞻
人工智能·机器学习
数说星榆1812 分钟前
AI零售:个性化推荐与智能库存管理
大数据·人工智能·零售
阿杰学AI2 分钟前
AI核心知识69——大语言模型之SSM (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·ssm·状态空间模型
奔跑草-5 分钟前
【AI日报】每日AI最新消息2026-01-28
人工智能·目标检测·机器学习·计算机视觉·产品经理
罗政7 分钟前
AI提取一批Excel单元格内容(快递信息)数据安全,支持断网提取
人工智能·excel
Serverless 社区8 分钟前
探秘 AgentRun丨动态下发+权限隔离,重构 AI Agent 安全体系
人工智能·安全·重构
光羽隹衡9 分钟前
计算机视觉--Opencv(郁金香图像轮廓提取与多边形逼近)
人工智能·opencv·计算机视觉
星海之恋99212 分钟前
比官方便宜一半以上!Midjourney API 申请及使用
人工智能·midjourney
机器学习算法与Python实战12 分钟前
DeepSeek-OCR-2 本地部署,实测
人工智能·ocr