机器学习中常用的几种距离——欧式、余弦等

目录

一、欧式距离(L2距离)

(1)二维空间的距离公式(三维空间的在这个基础上类推):

A(x1,y1),B(x2,y2)两点之间的欧式距离为:

(2)n维空间的距离公式

A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的欧式距离为:

二、曼哈顿距离(L1距离)

就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投射的距离总和。

如下图中,红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的

曼哈顿距离。

(1)二维空间的曼哈顿距离公式:

  • A(x1,y1),B(x2,y2)两点之间的曼哈顿距离为:
    dAB = |x1 - x2| + |y1 - y2|

(2)n维空间的曼哈顿距离公式:

  • A(x1,x2,...,xn)和B(x21,x22,...,x2n)两点之间的曼哈顿距离为:

三、汉明距离

编辑距离。两个等⻓ 字符串s1与s2的汉明距离为:将其中⼀个变为另外⼀个所需要作的最⼩字符替换次数。
【注意:】

编辑距离与汉明距离相比,编辑距离不要求两个字符串的长度等长,他追求的是如何以最少的编辑(替换,插入,删除,位置交换)次数让两个字符串相同。

四、余弦相似度

两个⼆维空间中向量A(x1,y1)与向量B(x2,y2)的夹⻆余弦公式:

两个n维样本点A(x1,x12,...,x1n)和B(x21,x22,...,x2n)的夹⻆余弦为:

优缺点及其他距离待续。。。。。。

相关推荐
跳跳糖炒酸奶几秒前
第四章、Isaacsim在GUI中构建机器人(1): 添加简单对象
人工智能·python·ubuntu·机器人
猿饵块7 分钟前
机器人--ros2--IMU
人工智能
硅谷秋水7 分钟前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
LS_learner9 分钟前
小智机器人关键函数解析,Application::OutputAudio()处理音频数据的输出的函数
人工智能·嵌入式硬件
2301_7644413324 分钟前
基于神经网络的肾脏疾病预测模型
人工智能·深度学习·神经网络
子燕若水31 分钟前
用gpt-4o 生成图的教程和常用提示词
人工智能
weixin_4424240335 分钟前
Opencv计算机视觉编程攻略-第七节 提取直线、轮廓和区域
人工智能·opencv·计算机视觉
x-cmd37 分钟前
[250401] OpenAI 向免费用户开放 GPT-4o 图像生成功能 | Neovim 0.11 新特性解读
人工智能·gpt·文生图·openai·命令行·neovim
HABuo1 小时前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
Bruce_Liuxiaowei1 小时前
智能语音识别工具开发手记
人工智能·python·语音识别