通过os.dup sys.stdout.fileno捕获标准输出,判断pytorch算子是否fallback到了cpu

通过os.dup sys.stdout.fileno捕获标准输出,判断pytorch算子是否fallback到了cpu

某种设备在运行pytorch算子时,如果不支持会自动fallback到cpu,输出的tensor.device却不是cpu,我希望能获取到这个状态。本文通过捕获标准输出,根据终端是否输出fallback字符串,判断是否触发了fallback

一.代码

python 复制代码
import threading
import sys
import os

class CheckFallback:
    def __init__(self,enable=True):        
        self.is_fallback=False
        self.enable=enable
        if self.enable:
            self.stdout_fileno_origin = sys.stdout.fileno()
            self.stdout_fileno_dup = os.dup(self.stdout_fileno_origin)
            self.stdout_pipe = os.pipe()
            os.dup2(self.stdout_pipe[1], self.stdout_fileno_origin)
            os.close(self.stdout_pipe[1])
            self.stdout_messages = ''
            self.running=True
            self.task = threading.Thread(target=self.read_pipe)
            self.task.start()

    def read_pipe(self):
        while self.running:
            msg = os.read(self.stdout_pipe[0], 8192)
            if msg:
                self.stdout_messages+=msg.decode('utf-8')
    
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.enable:
            self.running=False
            os.close(self.stdout_fileno_origin)
            self.task.join()
            os.close(self.stdout_pipe[0])
            os.dup2(self.stdout_fileno_dup, self.stdout_fileno_origin)
            os.close(self.stdout_fileno_dup)
            #检查终端是否有fallback信息输出
            if self.stdout_messages.find("fallback")>=0:
                self.is_fallback=True

import torch
A=torch.ones((512,65024),dtype=torch.float16).to("your_device")
with CheckFallback() as f:
    C=torch.ops.aten.gelu.default(A)    
print(f.is_fallback)
print(C.shape,C.device)

with CheckFallback() as f:
    A=torch.ones((1,32),dtype=torch.float16).to("your_device")
    C=torch.ops.aten.pow(A,A)
print(f.is_fallback)
print(C.shape,C.device)
相关推荐
sali-tec5 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗5 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记5 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技5 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风5 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao5 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
newobut5 小时前
vscode远程调试python程序,基于debugpy库
vscode·python·调试·debugpy
APIshop6 小时前
用 Python 把“API 接口”当数据源——从找口子到落库的全流程实战
开发语言·python
Mr.Lee jack6 小时前
【torch.compile】LazyTensor延迟执行机制
pytorch
九河云6 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云