代码随想录-算法训练营day40【动态规划03:整数拆分、不同的二叉搜索树】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客

bash 复制代码
第九章 动态规划part03

● 343.整数拆分 
● 096.不同的二叉搜索树 

 详细布置 

今天两题都挺有难度,建议大家思考一下没思路,直接看题解,第一次做,硬想很难想出来。

 343. 整数拆分 

https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html   
视频讲解:https://www.bilibili.com/video/BV1Mg411q7YJ

 96.不同的二叉搜索树 

https://programmercarl.com/0096.%E4%B8%8D%E5%90%8C%E7%9A%84%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91.html   
视频讲解:https://www.bilibili.com/video/BV1eK411o7QA 

目录

0343_整数拆分

0096_不同的二叉搜索树


0343_整数拆分

java 复制代码
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class _0343_整数拆分 {
}

class Solution0343 {
    public int integerBreak(int n) {
        int[] dp = new int[n + 1];
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = Math.max(dp[i], Math.max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }

    public int integerBreak2(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        int result = 1;
        while (n > 4) {
            result *= 3;
            n -= 3;
        }
        result *= n;
        return result;
    }

    public int integerBreak3(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[] dp = new int[n + 1];
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            for (int j = 1; j <= i - j; j++) {
                //这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
                dp[i] = Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
                //j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }
}

0096_不同的二叉搜索树

java 复制代码
package com.question.solve.leetcode.programmerCarl2._10_dynamicProgramming;

public class _0096_不同的二叉搜索树 {
}

class Solution0096 {
    public int numTrees(int n) {
        int dp[] = new int[n + 1];
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }

    public int numTrees2(int n) {
        //初始化dp数组
        int[] dp = new int[n + 1];
        //初始化0个节点和1个节点的情况
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                //对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加
                //一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
}
相关推荐
NAGNIP7 分钟前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法
NAGNIP12 分钟前
一文搞懂KV-Cache
人工智能·算法
CoovallyAIHub18 分钟前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
爱喝茶的小茶32 分钟前
周赛98补题
开发语言·c++·算法
小庞在加油1 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
ComputerInBook2 小时前
C++ 标准模板库算法之 transform 用法
开发语言·c++·算法·transform算法
hn小菜鸡8 小时前
LeetCode 377.组合总和IV
数据结构·算法·leetcode
Deepoch8 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
时空自由民.9 天前
C++ 不同线程之间传值
开发语言·c++·算法