Hadoop介绍

当谈论Hadoop时,我们需要考虑它的核心组件以及其在大数据处理中的作用。

Hadoop分布式文件系统(HDFS):

HDFS是Hadoop的存储组件,旨在处理大规模数据集的存储需求。它具有高容错性,可扩展性和可靠性。

HDFS将大文件分割成数据块(通常大小为128MB或更大),并将这些数据块复制到集群中的不同节点上,以确保数据的冗余备份和可靠性。默认情况下,每个数据块有三个副本存储在不同的节点上。

HDFS采用主从架构,包括一个NameNode和多个DataNode。NameNode负责管理文件系统命名空间,记录文件的元数据信息,而DataNode则存储实际的数据块。

HDFS通过使用副本机制和数据本地性原则来提高数据访问效率,使得MapReduce等计算框架可以在数据所在的节点上执行任务,减少数据传输开销。

Hadoop YARN(Yet Another Resource Negotiator):

YARN是Hadoop的资源管理和作业调度框架,允许多个数据处理框架在同一集群上共享资源,以提高资源利用率。

YARN包括ResourceManager和NodeManager两个核心组件。ResourceManager负责整个集群的资源分配和作业调度,而NodeManager则负责在各个节点上执行容器,并监控资源使用情况。

YARN支持多种应用程序模型,包括传统的基于批处理的MapReduce模型,以及新兴的交互式查询(例如Apache Tez)、流处理(例如Apache Flink)和机器学习(例如Apache Spark)等。

其他Hadoop生态系统组件:

MapReduce:最初是Hadoop的主要计算框架,用于处理大规模数据集的分布式计算。它将任务分解成可并行执行的Map和Reduce阶段,并具有高度容错性。

Hive:基于Hadoop的数据仓库工具,提供类似SQL的查询语言(HiveQL)来分析存储在HDFS中的数据,适用于数据分析和报表生成。

Pig:另一个基于Hadoop的数据分析工具,提供一种类似于脚本语言的语法来编写数据流处理程序,适用于ETL(Extract-Transform-Load)任务和数据流分析。

Spark:近年来迅速崛起的大数据处理框架,提供了比MapReduce更快的数据处理速度和更丰富的功能集,包括内存计算、流处理、机器学习等。

HBase:一个分布式、可伸缩、面向列的NoSQL数据库,用于实时读写大规模数据集。

ZooKeeper:用于分布式应用程序协调和服务发现的开源分布式协调服务。

相关推荐
赛逸展张胜5 分钟前
CES Asia是一个关于什么的展会?
大数据·人工智能·科技
树莓集团9 分钟前
树莓集团:数字化产业园建设运营推动数字经济
大数据·云计算·媒体
努力的布布9 分钟前
Elasticsearch-模糊查询
大数据·elasticsearch·搜索引擎
天乐敲代码25 分钟前
Etcd静态分布式集群搭建
数据库·分布式·etcd
TDengine (老段)1 小时前
两分钟掌握 TDengine 全部写入方式
大数据·数据库·时序数据库·tdengine·涛思数据
光纤传感技术研究2 小时前
分布式光纤传感|分布式光纤测温|线型光纤感温火灾探测器DTS|DTS|DAS|BOTDA的行业16年的总结【2024年】
分布式·dts·光纤传感器·botda·光纤传感技术
派可数据BI可视化2 小时前
连锁餐饮行业数据可视化分析方案
大数据·数据库·数据仓库·数据分析·商业智能bi
qiquandongkh2 小时前
期权懂|期权合约是如何划分月份的?如何换月移仓?
大数据·区块链
dbcat官方2 小时前
1.微服务灰度发布(方案设计)
java·数据库·分布式·微服务·中间件·架构
朴拙数科2 小时前
交易生态全解析:聚合交易平台 交易策略平台 技术策略提供方 交易机器人平台 资管、支付平台 社交交易社区 跟单平台在饼圈量化的定义和关系是怎样的?
大数据·机器人·区块链