Hadoop介绍

当谈论Hadoop时,我们需要考虑它的核心组件以及其在大数据处理中的作用。

Hadoop分布式文件系统(HDFS):

HDFS是Hadoop的存储组件,旨在处理大规模数据集的存储需求。它具有高容错性,可扩展性和可靠性。

HDFS将大文件分割成数据块(通常大小为128MB或更大),并将这些数据块复制到集群中的不同节点上,以确保数据的冗余备份和可靠性。默认情况下,每个数据块有三个副本存储在不同的节点上。

HDFS采用主从架构,包括一个NameNode和多个DataNode。NameNode负责管理文件系统命名空间,记录文件的元数据信息,而DataNode则存储实际的数据块。

HDFS通过使用副本机制和数据本地性原则来提高数据访问效率,使得MapReduce等计算框架可以在数据所在的节点上执行任务,减少数据传输开销。

Hadoop YARN(Yet Another Resource Negotiator):

YARN是Hadoop的资源管理和作业调度框架,允许多个数据处理框架在同一集群上共享资源,以提高资源利用率。

YARN包括ResourceManager和NodeManager两个核心组件。ResourceManager负责整个集群的资源分配和作业调度,而NodeManager则负责在各个节点上执行容器,并监控资源使用情况。

YARN支持多种应用程序模型,包括传统的基于批处理的MapReduce模型,以及新兴的交互式查询(例如Apache Tez)、流处理(例如Apache Flink)和机器学习(例如Apache Spark)等。

其他Hadoop生态系统组件:

MapReduce:最初是Hadoop的主要计算框架,用于处理大规模数据集的分布式计算。它将任务分解成可并行执行的Map和Reduce阶段,并具有高度容错性。

Hive:基于Hadoop的数据仓库工具,提供类似SQL的查询语言(HiveQL)来分析存储在HDFS中的数据,适用于数据分析和报表生成。

Pig:另一个基于Hadoop的数据分析工具,提供一种类似于脚本语言的语法来编写数据流处理程序,适用于ETL(Extract-Transform-Load)任务和数据流分析。

Spark:近年来迅速崛起的大数据处理框架,提供了比MapReduce更快的数据处理速度和更丰富的功能集,包括内存计算、流处理、机器学习等。

HBase:一个分布式、可伸缩、面向列的NoSQL数据库,用于实时读写大规模数据集。

ZooKeeper:用于分布式应用程序协调和服务发现的开源分布式协调服务。

相关推荐
Gofarlic_oms16 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
Zoey的笔记本7 小时前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
lingling0098 小时前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏8 小时前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
Acrel187021067068 小时前
浅谈电气防火限流保护器设计在消防安全中的应用价值
大数据·网络
赵谨言8 小时前
Python串口的三相交流电机控制系统研究
大数据·开发语言·经验分享·python
汇智信科9 小时前
智慧矿山 & 工业大数据创新解决方案 —— 智能能源管理系统
大数据·能源·智慧矿山·工业大数据·汇智信科·智能能源管理系统·多元维度
企业对冲系统官9 小时前
基差风险管理系统日志分析功能的架构与实现
大数据·网络·数据库·算法·github·动态规划
忍冬行者10 小时前
Elasticsearch 超大日志流量集群搭建(网关 + 独立 Master + 独立 Data 纯生产架构,角色完全分离,百万级日志吞吐)
大数据·elasticsearch·云原生·架构·云计算
阿坤带你走近大数据11 小时前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用