Hadoop介绍

当谈论Hadoop时,我们需要考虑它的核心组件以及其在大数据处理中的作用。

Hadoop分布式文件系统(HDFS):

HDFS是Hadoop的存储组件,旨在处理大规模数据集的存储需求。它具有高容错性,可扩展性和可靠性。

HDFS将大文件分割成数据块(通常大小为128MB或更大),并将这些数据块复制到集群中的不同节点上,以确保数据的冗余备份和可靠性。默认情况下,每个数据块有三个副本存储在不同的节点上。

HDFS采用主从架构,包括一个NameNode和多个DataNode。NameNode负责管理文件系统命名空间,记录文件的元数据信息,而DataNode则存储实际的数据块。

HDFS通过使用副本机制和数据本地性原则来提高数据访问效率,使得MapReduce等计算框架可以在数据所在的节点上执行任务,减少数据传输开销。

Hadoop YARN(Yet Another Resource Negotiator):

YARN是Hadoop的资源管理和作业调度框架,允许多个数据处理框架在同一集群上共享资源,以提高资源利用率。

YARN包括ResourceManager和NodeManager两个核心组件。ResourceManager负责整个集群的资源分配和作业调度,而NodeManager则负责在各个节点上执行容器,并监控资源使用情况。

YARN支持多种应用程序模型,包括传统的基于批处理的MapReduce模型,以及新兴的交互式查询(例如Apache Tez)、流处理(例如Apache Flink)和机器学习(例如Apache Spark)等。

其他Hadoop生态系统组件:

MapReduce:最初是Hadoop的主要计算框架,用于处理大规模数据集的分布式计算。它将任务分解成可并行执行的Map和Reduce阶段,并具有高度容错性。

Hive:基于Hadoop的数据仓库工具,提供类似SQL的查询语言(HiveQL)来分析存储在HDFS中的数据,适用于数据分析和报表生成。

Pig:另一个基于Hadoop的数据分析工具,提供一种类似于脚本语言的语法来编写数据流处理程序,适用于ETL(Extract-Transform-Load)任务和数据流分析。

Spark:近年来迅速崛起的大数据处理框架,提供了比MapReduce更快的数据处理速度和更丰富的功能集,包括内存计算、流处理、机器学习等。

HBase:一个分布式、可伸缩、面向列的NoSQL数据库,用于实时读写大规模数据集。

ZooKeeper:用于分布式应用程序协调和服务发现的开源分布式协调服务。

相关推荐
电商软件开发 小银36 分钟前
八年磨一剑:中品维度如何用“分布式电商”为商家打开增长新通路?
大数据·软件开发·私域运营·实体店转型·中品维度·数字化经济·商业模式设计
武汉唯众智创1 小时前
产教融合背景下,高职大数据技术专业“课证融通”课程解决方案
大数据·课证赛创·课证融通·大数据专业·大数据技术专业·高职大数据技术专业
WnHj3 小时前
kafka的数据消费通过flinksql 入数到Doris的报错(Connection timed out)
分布式·kafka
小小王app小程序开发4 小时前
任务悬赏小程序深度细分分析:非技术视角下的运营逻辑拆解
大数据·小程序
非极限码农8 小时前
Neo4j图数据库上手指南
大数据·数据库·数据分析·neo4j
莫叫石榴姐9 小时前
SQL百题斩:从入门到精通,一站式解锁数据世界
大数据·数据仓库·sql·面试·职场和发展
Hello.Reader9 小时前
Flink 状态后端(State Backends)实战原理、选型、配置与调优
大数据·flink
dundunmm12 小时前
【每天一个知识点】[特殊字符] 大数据的定义及单位
大数据
IT森林里的程序猿12 小时前
基于Hadoop的京东电商平台手机推荐系统的设计与实现
大数据·hadoop·智能手机
笨蛋少年派13 小时前
MapReduce简介
大数据·mapreduce