Hadoop介绍

当谈论Hadoop时,我们需要考虑它的核心组件以及其在大数据处理中的作用。

Hadoop分布式文件系统(HDFS):

HDFS是Hadoop的存储组件,旨在处理大规模数据集的存储需求。它具有高容错性,可扩展性和可靠性。

HDFS将大文件分割成数据块(通常大小为128MB或更大),并将这些数据块复制到集群中的不同节点上,以确保数据的冗余备份和可靠性。默认情况下,每个数据块有三个副本存储在不同的节点上。

HDFS采用主从架构,包括一个NameNode和多个DataNode。NameNode负责管理文件系统命名空间,记录文件的元数据信息,而DataNode则存储实际的数据块。

HDFS通过使用副本机制和数据本地性原则来提高数据访问效率,使得MapReduce等计算框架可以在数据所在的节点上执行任务,减少数据传输开销。

Hadoop YARN(Yet Another Resource Negotiator):

YARN是Hadoop的资源管理和作业调度框架,允许多个数据处理框架在同一集群上共享资源,以提高资源利用率。

YARN包括ResourceManager和NodeManager两个核心组件。ResourceManager负责整个集群的资源分配和作业调度,而NodeManager则负责在各个节点上执行容器,并监控资源使用情况。

YARN支持多种应用程序模型,包括传统的基于批处理的MapReduce模型,以及新兴的交互式查询(例如Apache Tez)、流处理(例如Apache Flink)和机器学习(例如Apache Spark)等。

其他Hadoop生态系统组件:

MapReduce:最初是Hadoop的主要计算框架,用于处理大规模数据集的分布式计算。它将任务分解成可并行执行的Map和Reduce阶段,并具有高度容错性。

Hive:基于Hadoop的数据仓库工具,提供类似SQL的查询语言(HiveQL)来分析存储在HDFS中的数据,适用于数据分析和报表生成。

Pig:另一个基于Hadoop的数据分析工具,提供一种类似于脚本语言的语法来编写数据流处理程序,适用于ETL(Extract-Transform-Load)任务和数据流分析。

Spark:近年来迅速崛起的大数据处理框架,提供了比MapReduce更快的数据处理速度和更丰富的功能集,包括内存计算、流处理、机器学习等。

HBase:一个分布式、可伸缩、面向列的NoSQL数据库,用于实时读写大规模数据集。

ZooKeeper:用于分布式应用程序协调和服务发现的开源分布式协调服务。

相关推荐
物联网软硬件开发-轨物科技12 分钟前
【轨物方案】新能源的下半场:构筑光伏场站全生命周期智慧运维新范式
大数据·人工智能·物联网
汇智信科8 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统
阿里云大数据AI技术9 小时前
Hologres Dynamic Table 在淘天价格力的业务实践
大数据·人工智能·阿里云·hologres·增量刷新
机灵猫11 小时前
Redisson 到底能做什么?从分布式锁说起
分布式
OpenCSG12 小时前
新能源汽车行业经典案例 — 某新能源汽车 × OpenCSG
大数据·人工智能·汽车·客户案例·opencsg
外参财观12 小时前
流量变现的边界:携程金融按下暂停键后的冷思考
大数据·人工智能·金融
CCPC不拿奖不改名13 小时前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
智在碧得13 小时前
碧服打造DataOps全链路闭环,定义大数据工程化发布新标杆
大数据·网络·数据库
亿信华辰软件13 小时前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
Elastic 中国社区官方博客14 小时前
使用瑞士风格哈希表实现更快的 ES|QL 统计
大数据·数据结构·sql·elasticsearch·搜索引擎·全文检索·散列表