Application Development using Large Language Models笔记

诸神缄默不语-个人CSDN博文目录

这是2023年NeurIPS Andrew Ng和Isa Fulford做的tutorial,关于如何用LLM来开发新产品的技术和思路:NeurIPS Tutorial Application Development using Large Language Models

文章目录

  • [1. LLM基础](#1. LLM基础)
  • [2. 提示工程技巧](#2. 提示工程技巧)
  • [3. 微调](#3. 微调)
  • [4. AI创业和其他应用思路](#4. AI创业和其他应用思路)

1. LLM基础

LLM base的思路是"预测下一个token",LLM聊天模型的思路是对齐instructuion(指令),也就是用问答对来继续预训练LLM。这样能让LLM有回答问题 / 遵从指令的能力。

RLHF,对齐人类需求:人工对LLM回答结果打分(实现是比较哪个回答更好),学习人工打分的reward model

2. 提示工程技巧

  1. 加reference
  2. 重复问,用类似模型聚合的方式
  3. 分解任务:分类query
  4. moderation API:检测安全性
  5. 防止prompt injection:
    1. 将用户输入从prompt中分隔出来

      2. 多问一次,有没有prompt injection
  6. 用户给出的例子、低资源语言prompt、代码、"奶奶讲故事"可能会绕过安全限制

3. 微调

  1. 也许只需要200-500个样本

4. AI创业和其他应用思路

  1. 分解人类的实际工作内容,根据技术的可获得性判断AI在哪一步可能有用
  2. 及时监控LLM输出
  3. 评估LLM的表现:制作测试集和评估指标
  4. 用LM评估指标:这一点我记得另外有一篇paper说LLM更倾向于同一LLM生成的结果来着,忘了具体是哪篇了,下次找找
  5. 这玩意仍然难以debug(我对此深有感触)
  6. 定义specific and narrow use case,明确评估指标、成功的标准,评估风险
  7. 用LLM让工作流程更简单、更便宜
  8. LLM基座模型可能会自己变好(什么,AI界自己的摩尔定律)
  9. personalized LLM可能需要LLM在每一层都努力,pretraining阶段就需要考虑文化差异,RLHF阶段有personalized RLHF、group wise RLHF、不同的甚至冲突的preference
  10. LLM的置信度:简单方案是直接问LLM你的confidence是多少;更好的方法是抽样多条回答,检查其一致性
  11. 闭源模型效果好但不好调,还想要长记忆,还想要用户能够实时反馈并得以调整:Andrew的建议是模仿人类的思路一步一步来,这样也方便做错误分析
相关推荐
爱吃泡芙的小白白3 分钟前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
cooldream20095 分钟前
从语音到策略——ASR + 大语言模型驱动的辩论对话系统设计实践
人工智能·语言模型·具身数字人
人工智能AI技术12 分钟前
【Agent从入门到实践】42实战:用Docker打包Agent,实现一键部署
人工智能·python
dream_home840714 分钟前
拉普拉斯算子识别图像模糊详解
人工智能·计算机视觉
MobiusStack23 分钟前
MBTI性格测试图文制作指南,用01Agent套用爆款封面模板
人工智能
idontknow23324 分钟前
DPDK学习笔记(1):二层转发应用例代码解析
c语言·网络·笔记·学习
云草桑1 小时前
.net AI开发04 第八章 引入RAG知识库与文档管理核心能力及事件总线
数据库·人工智能·microsoft·c#·asp.net·.net·rag
2501_933329551 小时前
Infoseek数字公关AI中台技术解析:如何构建企业级舆情监测与智能处置系统
开发语言·人工智能
求真求知的糖葫芦1 小时前
耦合传输线分析学习笔记(八)对称耦合微带线S参数矩阵推导与应用(上)
笔记·学习·矩阵·射频工程
AI即插即用1 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测