1、300.最长递增子序列
首先通过本题大家要明确什么是子序列,"子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序"。
java
class Solution {
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
int res = 1;
Arrays.fill(dp, 1);
for (int i = 1; i < dp.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
res = Math.max(res, dp[i]);
}
}
return res;
}
}
2、674.最长连续递增子序列
本题相对于昨天的动态规划:300.最长递增子序列 (opens new window)最大的区别在于"连续"。
本题要求的是最长连续递增序列
java
/**
* 1.dp[i] 代表当前下标最大连续值
* 2.递推公式 if(nums[i+1]>nums[i]) dp[i+1] = dp[i]+1
* 3.初始化 都为1
* 4.遍历方向,从其那往后
* 5.结果推导 。。。。
* @param nums
* @return
*/
public static int findLengthOfLCIS(int[] nums) {
int[] dp = new int[nums.length];
for (int i = 0; i < dp.length; i++) {
dp[i] = 1;
}
int res = 1;
//可以注意到,這邊的 i 是從 0 開始,所以會出現和卡哥的C++ code有差異的地方,在一些地方會看到有 i + 1 的偏移。
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] > nums[i]) {
dp[i + 1] = dp[i] + 1;
}
res = res > dp[i + 1] ? res : dp[i + 1];
}
return res;
}
3、718.最长重复子数组
注意题目中说的子数组,其实就是连续子序列。
要求两个数组中最长重复子数组,如果是暴力的解法 只需要先两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度
java
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int result = 0;
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
for (int i = 1; i < nums1.length + 1; i++) {
for (int j = 1; j < nums2.length + 1; j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
result = Math.max(result, dp[i][j]);
}
}
}
return result;
}
}