41、Flink 连续窗口操作详解

使用窗口计算的结果
a)概述

窗口操作的结果会变回 DataStream,并且窗口操作的信息不会保存在输出的元素中,如果想要保留窗口的 meta-information,需要在 ProcessWindowFunction 里手动将他们放入输出的元素中。

输出元素中保留的唯一相关的信息是元素的 timestamp ,它被设置为窗口能允许的最大 timestamp,也就是 end timestamp - 1,因为窗口末端的 timestamp 是排它的,同时适用于 event-time 窗口和 processing-time 窗口。

在窗口操作之后,元素总是会携带一个 event-time 或 processing-time timestamp,对 Processing-time 窗口来说,这并不意味着什么。 而对于 event-time 窗口来说,"输出携带 timestamp" 以及 "watermark 与窗口的相互作用" 这两者使建立窗口大小相同的连续窗口操作变为可能。

b)watermarks 和 windows 的交互

当 watermark 到达窗口算子时,它触发了两件事:

  • 这个 watermark 触发了所有最大 timestamp(即 end-timestamp - 1)小于它的窗口
  • 这个 watermark 被原封不动地转发给下游的任务。
c)连续窗口操作

窗口结果的 timestamp 如何计算以及 watermark 如何与窗口相互作用使串联多个窗口操作成为可能;这提供了一种便利的方法,能够有两个连续的窗口,他们即能使用不同的 key, 又能让上游操作中某个窗口的数据出现在下游操作的相同窗口。

示例 :第一个操作中时间窗口[0, 5) 的结果会出现在下一个窗口操作的 [0, 5) 窗口中,即先在一个窗口内按 key 求和,再在下一个操作中找出这个窗口中 top-k 的元素。

复制代码
DataStream<Integer> input = ...;

DataStream<Integer> resultsPerKey = input
    .keyBy(<key selector>)
    .window(TumblingEventTimeWindows.of(Time.seconds(5)))
    .reduce(new Summer());

DataStream<Integer> globalResults = resultsPerKey
    .windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
    .process(new TopKWindowFunction());
相关推荐
qq_463944866 小时前
【Spark征服之路-2.2-安装部署Spark(二)】
大数据·分布式·spark
weixin_505154467 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
打码人的日常分享7 小时前
智慧城市建设方案
大数据·架构·智慧城市·制造
阿里云大数据AI技术9 小时前
ES Serverless 8.17王牌发布:向量检索「火力全开」,智能扩缩「秒级响应」!
大数据·运维·serverless
Mikhail_G10 小时前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
G皮T10 小时前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
大霸王龙11 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
点赋科技12 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ12 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克12 小时前
Flink CDC —部署模式
大数据·flink