41、Flink 连续窗口操作详解

使用窗口计算的结果
a)概述

窗口操作的结果会变回 DataStream,并且窗口操作的信息不会保存在输出的元素中,如果想要保留窗口的 meta-information,需要在 ProcessWindowFunction 里手动将他们放入输出的元素中。

输出元素中保留的唯一相关的信息是元素的 timestamp ,它被设置为窗口能允许的最大 timestamp,也就是 end timestamp - 1,因为窗口末端的 timestamp 是排它的,同时适用于 event-time 窗口和 processing-time 窗口。

在窗口操作之后,元素总是会携带一个 event-time 或 processing-time timestamp,对 Processing-time 窗口来说,这并不意味着什么。 而对于 event-time 窗口来说,"输出携带 timestamp" 以及 "watermark 与窗口的相互作用" 这两者使建立窗口大小相同的连续窗口操作变为可能。

b)watermarks 和 windows 的交互

当 watermark 到达窗口算子时,它触发了两件事:

  • 这个 watermark 触发了所有最大 timestamp(即 end-timestamp - 1)小于它的窗口
  • 这个 watermark 被原封不动地转发给下游的任务。
c)连续窗口操作

窗口结果的 timestamp 如何计算以及 watermark 如何与窗口相互作用使串联多个窗口操作成为可能;这提供了一种便利的方法,能够有两个连续的窗口,他们即能使用不同的 key, 又能让上游操作中某个窗口的数据出现在下游操作的相同窗口。

示例 :第一个操作中时间窗口[0, 5) 的结果会出现在下一个窗口操作的 [0, 5) 窗口中,即先在一个窗口内按 key 求和,再在下一个操作中找出这个窗口中 top-k 的元素。

复制代码
DataStream<Integer> input = ...;

DataStream<Integer> resultsPerKey = input
    .keyBy(<key selector>)
    .window(TumblingEventTimeWindows.of(Time.seconds(5)))
    .reduce(new Summer());

DataStream<Integer> globalResults = resultsPerKey
    .windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
    .process(new TopKWindowFunction());
相关推荐
程途拾光1584 小时前
企业部门协作泳道图制作工具 PC端
大数据·运维·流程图
落叶,听雪4 小时前
河南建站系统哪个好
大数据·人工智能·python
大数据追光猿5 小时前
【大数据Doris】生产环境,Doris主键模型全表7000万数据更新写入为什么那么慢?
大数据·经验分享·笔记·性能优化·doris
武子康5 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习
数据皮皮侠5 小时前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
Coder_Boy_7 小时前
基于SpringAI的智能运维平台(AI驱动)
大数据·运维·人工智能
智能化咨询8 小时前
(99页PPT)智慧校园XXX学院总体解决方案(附下载方式)
大数据
wang_yb10 小时前
数据分析师的“水晶球”:时间序列分析
大数据·databook
ModestCoder_10 小时前
Git 版本管理教程
大数据·git·elasticsearch
hg011810 小时前
湖南工程机械海外火爆,非洲成为出口新增长极
大数据