41、Flink 连续窗口操作详解

使用窗口计算的结果
a)概述

窗口操作的结果会变回 DataStream,并且窗口操作的信息不会保存在输出的元素中,如果想要保留窗口的 meta-information,需要在 ProcessWindowFunction 里手动将他们放入输出的元素中。

输出元素中保留的唯一相关的信息是元素的 timestamp ,它被设置为窗口能允许的最大 timestamp,也就是 end timestamp - 1,因为窗口末端的 timestamp 是排它的,同时适用于 event-time 窗口和 processing-time 窗口。

在窗口操作之后,元素总是会携带一个 event-time 或 processing-time timestamp,对 Processing-time 窗口来说,这并不意味着什么。 而对于 event-time 窗口来说,"输出携带 timestamp" 以及 "watermark 与窗口的相互作用" 这两者使建立窗口大小相同的连续窗口操作变为可能。

b)watermarks 和 windows 的交互

当 watermark 到达窗口算子时,它触发了两件事:

  • 这个 watermark 触发了所有最大 timestamp(即 end-timestamp - 1)小于它的窗口
  • 这个 watermark 被原封不动地转发给下游的任务。
c)连续窗口操作

窗口结果的 timestamp 如何计算以及 watermark 如何与窗口相互作用使串联多个窗口操作成为可能;这提供了一种便利的方法,能够有两个连续的窗口,他们即能使用不同的 key, 又能让上游操作中某个窗口的数据出现在下游操作的相同窗口。

示例 :第一个操作中时间窗口[0, 5) 的结果会出现在下一个窗口操作的 [0, 5) 窗口中,即先在一个窗口内按 key 求和,再在下一个操作中找出这个窗口中 top-k 的元素。

复制代码
DataStream<Integer> input = ...;

DataStream<Integer> resultsPerKey = input
    .keyBy(<key selector>)
    .window(TumblingEventTimeWindows.of(Time.seconds(5)))
    .reduce(new Summer());

DataStream<Integer> globalResults = resultsPerKey
    .windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
    .process(new TopKWindowFunction());
相关推荐
程序员皮皮林1 天前
Redis:大数据中如何抗住2000W的QPS
大数据·数据库·redis
武子康1 天前
大数据-169 Elasticsearch 入门到可用:索引/文档 CRUD 与搜索最小示例
大数据·后端·elasticsearch
v***91301 天前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
千里念行客2401 天前
国产射频芯片“小巨人”昂瑞微今日招股 拟于12月5日进行申购
大数据·前端·人工智能·科技
一水鉴天1 天前
整体设计 定稿 之15 chat分类的专题讨论(codebuddy)
大数据·分类·数据挖掘
7***u2162 天前
显卡(Graphics Processing Unit,GPU)架构详细解读
大数据·网络·架构
Qzkj6662 天前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
q***47432 天前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
寰宇视讯2 天前
奇兵到家九周年再进阶,获36氪“WISE2025商业之王 年度最具商业潜力企业”
大数据
声网2 天前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动