41、Flink 连续窗口操作详解

使用窗口计算的结果
a)概述

窗口操作的结果会变回 DataStream,并且窗口操作的信息不会保存在输出的元素中,如果想要保留窗口的 meta-information,需要在 ProcessWindowFunction 里手动将他们放入输出的元素中。

输出元素中保留的唯一相关的信息是元素的 timestamp ,它被设置为窗口能允许的最大 timestamp,也就是 end timestamp - 1,因为窗口末端的 timestamp 是排它的,同时适用于 event-time 窗口和 processing-time 窗口。

在窗口操作之后,元素总是会携带一个 event-time 或 processing-time timestamp,对 Processing-time 窗口来说,这并不意味着什么。 而对于 event-time 窗口来说,"输出携带 timestamp" 以及 "watermark 与窗口的相互作用" 这两者使建立窗口大小相同的连续窗口操作变为可能。

b)watermarks 和 windows 的交互

当 watermark 到达窗口算子时,它触发了两件事:

  • 这个 watermark 触发了所有最大 timestamp(即 end-timestamp - 1)小于它的窗口
  • 这个 watermark 被原封不动地转发给下游的任务。
c)连续窗口操作

窗口结果的 timestamp 如何计算以及 watermark 如何与窗口相互作用使串联多个窗口操作成为可能;这提供了一种便利的方法,能够有两个连续的窗口,他们即能使用不同的 key, 又能让上游操作中某个窗口的数据出现在下游操作的相同窗口。

示例 :第一个操作中时间窗口[0, 5) 的结果会出现在下一个窗口操作的 [0, 5) 窗口中,即先在一个窗口内按 key 求和,再在下一个操作中找出这个窗口中 top-k 的元素。

DataStream<Integer> input = ...;

DataStream<Integer> resultsPerKey = input
    .keyBy(<key selector>)
    .window(TumblingEventTimeWindows.of(Time.seconds(5)))
    .reduce(new Summer());

DataStream<Integer> globalResults = resultsPerKey
    .windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
    .process(new TopKWindowFunction());
相关推荐
上优17 分钟前
uniapp 选择 省市区 省市 以及 回显
大数据·elasticsearch·uni-app
samLi06201 小时前
【更新】中国省级产业集聚测算数据及协调集聚指数数据(2000-2022年)
大数据
Mephisto.java1 小时前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
EasyCVR2 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm2 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
科技象限3 小时前
电脑禁用U盘的四种简单方法(电脑怎么阻止u盘使用)
大数据·网络·电脑
天冬忘忧4 小时前
Kafka 生产者全面解析:从基础原理到高级实践
大数据·分布式·kafka
青云交4 小时前
大数据新视界 -- Hive 数据仓库:构建高效数据存储的基石(下)(2/ 30)
大数据·数据仓库·hive·数据安全·数据分区·数据桶·大数据存储
zmd-zk4 小时前
flink学习(2)——wordcount案例
大数据·开发语言·学习·flink
电子手信5 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱