YOLOv8实例分割离线数据增强,标签可视化!

YOLOv8实例分割离线数据增强的方式:首先使用labelme对图像进行标注,将图像和标注文件存放到images_json文件夹中,然后使用离线数据增强代码对进行增强。

代码较长,完整代码下载地址:完整代码

使用步骤:

1.在代码中设置增强次数和文件路径,选择想要数据增强的方式
复制代码
if __name__ == '__main__':

    need_aug_num = 5  # 每张图片需要增强的次数

    toolhelper = ToolHelper()  # 工具

    is_endwidth_dot = True  # 文件是否以.jpg或者png结尾

    dataAug = DataAugmentForObjectDetection()  # 数据增强工具类

    # 获取相关参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--source_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json')
    parser.add_argument('--save_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json2')
    args = parser.parse_args()
    source_img_json_path = args.source_img_json_path  # 图片和json文件原始位置
    save_img_json_path = args.save_img_json_path  # 图片增强结果保存文件


        # 是否使用某种增强方式
        self.is_addNoise = True
        self.is_changeLight = is_changeLight
        self.is_random_point = is_random_point
        self.is_filp_pic_bboxes = is_filp_pic_bboxes
        self.is_shift_pic_bboxes = True
2.标签可视化代码如下:
复制代码
import os
import json
import cv2
import numpy as np

# 设置源文件夹和目标文件夹路径

source_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2'
target_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2keshihua'

# 确保目标文件夹存在
if not os.path.exists(target_folder):
    os.makedirs(target_folder)

# 遍历源文件夹中的所有文件
for file_name in os.listdir(source_folder):
    if file_name.endswith('.json'):
        json_path = os.path.join(source_folder, file_name)
        with open(json_path) as json_file:
            data = json.load(json_file)

        # 获取图片路径
        image_path = os.path.join(source_folder, data['imagePath'])

        # 读取图片
        image = cv2.imread(image_path)

        # 遍历所有的标注
        for shape in data['shapes']:
            points = np.array(shape['points'], dtype=np.int32)
            cv2.polylines(image, [points], True, (0, 255, 0), 2)  # 标注为绿色线条

        # 保存标注后的图片
        cv2.imwrite(os.path.join(target_folder, file_name.replace('.json', '.png')), image)

print("标注可视化完成,并保存到指定文件夹。")
相关推荐
Coovally AI模型快速验证21 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
程序员Linc1 天前
OpenCV-python小玩意17 YOLO目标检测之环境安装
人工智能·opencv·yolo·目标检测
weixin_468466851 天前
YOLOv11结构解析及源码复现
人工智能·深度学习·yolo·目标检测·计算机视觉·图像识别·yolov11
昵称是6硬币1 天前
SAM3论文精读(逐段解析)
图像分割·sam·实例分割·视觉大模型·sam3·开放词汇检测
深蓝海拓1 天前
用于优化和改进YOLO11的一些方法
人工智能·python·yolo·机器学习
AI视觉网奇1 天前
android yolo12 android 实战笔记
android·笔记·yolo
yunhuibin1 天前
yolov8通过百度飞桨AIstudio平台搭建
yolo·百度·paddlepaddle
Star abuse1 天前
XML转YOLO格式数据集教程
xml·人工智能·yolo
AI街潜水的八角1 天前
番茄成熟度检测和识别3:基于深度学习YOLOv12神经网络实现番茄成熟度检测和识别(含训练代码、数据集和GUI交互界面)
深度学习·神经网络·yolo
懷淰メ2 天前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的水体污染检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·水体污染