YOLOv8实例分割离线数据增强,标签可视化!

YOLOv8实例分割离线数据增强的方式:首先使用labelme对图像进行标注,将图像和标注文件存放到images_json文件夹中,然后使用离线数据增强代码对进行增强。

代码较长,完整代码下载地址:完整代码

使用步骤:

1.在代码中设置增强次数和文件路径,选择想要数据增强的方式
复制代码
if __name__ == '__main__':

    need_aug_num = 5  # 每张图片需要增强的次数

    toolhelper = ToolHelper()  # 工具

    is_endwidth_dot = True  # 文件是否以.jpg或者png结尾

    dataAug = DataAugmentForObjectDetection()  # 数据增强工具类

    # 获取相关参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--source_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json')
    parser.add_argument('--save_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json2')
    args = parser.parse_args()
    source_img_json_path = args.source_img_json_path  # 图片和json文件原始位置
    save_img_json_path = args.save_img_json_path  # 图片增强结果保存文件


        # 是否使用某种增强方式
        self.is_addNoise = True
        self.is_changeLight = is_changeLight
        self.is_random_point = is_random_point
        self.is_filp_pic_bboxes = is_filp_pic_bboxes
        self.is_shift_pic_bboxes = True
2.标签可视化代码如下:
复制代码
import os
import json
import cv2
import numpy as np

# 设置源文件夹和目标文件夹路径

source_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2'
target_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2keshihua'

# 确保目标文件夹存在
if not os.path.exists(target_folder):
    os.makedirs(target_folder)

# 遍历源文件夹中的所有文件
for file_name in os.listdir(source_folder):
    if file_name.endswith('.json'):
        json_path = os.path.join(source_folder, file_name)
        with open(json_path) as json_file:
            data = json.load(json_file)

        # 获取图片路径
        image_path = os.path.join(source_folder, data['imagePath'])

        # 读取图片
        image = cv2.imread(image_path)

        # 遍历所有的标注
        for shape in data['shapes']:
            points = np.array(shape['points'], dtype=np.int32)
            cv2.polylines(image, [points], True, (0, 255, 0), 2)  # 标注为绿色线条

        # 保存标注后的图片
        cv2.imwrite(os.path.join(target_folder, file_name.replace('.json', '.png')), image)

print("标注可视化完成,并保存到指定文件夹。")
相关推荐
weixin_457340212 小时前
旋转OBB数据集标注查看器
图像处理·人工智能·python·yolo·目标检测·数据集·旋转
糖果罐子♡3 小时前
在 openEuler 上部署 YOLOv8 实现实时目标检测
人工智能·yolo·目标检测
plmm烟酒僧3 小时前
OpenVINO 推理 YOLO Demo 分享 (Python)
图像处理·人工智能·python·yolo·openvino·runtime·推理
Coding茶水间5 小时前
基于深度学习的水稻虫害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
超龄超能程序猿6 小时前
LabelImage+YOLOv8 图片单一目标检测模型训练
人工智能·yolo·目标检测
AI-嘉文哥哥7 小时前
ADAS自动驾驶-前车碰撞预警(追尾预警、碰撞检测)系统
人工智能·深度学习·yolo·目标检测·数据分析·课程设计·qt5
a1111111111ss19 小时前
FASFFhead
yolo
FL16238631291 天前
自动驾驶场景驾驶员注意力安全行为睡驾分心驾驶疲劳驾驶检测数据集VOC+YOLO格式5370张6类别
人工智能·yolo·自动驾驶