YOLOv8实例分割离线数据增强,标签可视化!

YOLOv8实例分割离线数据增强的方式:首先使用labelme对图像进行标注,将图像和标注文件存放到images_json文件夹中,然后使用离线数据增强代码对进行增强。

代码较长,完整代码下载地址:完整代码

使用步骤:

1.在代码中设置增强次数和文件路径,选择想要数据增强的方式
if __name__ == '__main__':

    need_aug_num = 5  # 每张图片需要增强的次数

    toolhelper = ToolHelper()  # 工具

    is_endwidth_dot = True  # 文件是否以.jpg或者png结尾

    dataAug = DataAugmentForObjectDetection()  # 数据增强工具类

    # 获取相关参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--source_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json')
    parser.add_argument('--save_img_json_path', type=str, default='H:/CSDN/DataAugForObjectSegmentation/images_json2')
    args = parser.parse_args()
    source_img_json_path = args.source_img_json_path  # 图片和json文件原始位置
    save_img_json_path = args.save_img_json_path  # 图片增强结果保存文件


        # 是否使用某种增强方式
        self.is_addNoise = True
        self.is_changeLight = is_changeLight
        self.is_random_point = is_random_point
        self.is_filp_pic_bboxes = is_filp_pic_bboxes
        self.is_shift_pic_bboxes = True
2.标签可视化代码如下:
import os
import json
import cv2
import numpy as np

# 设置源文件夹和目标文件夹路径

source_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2'
target_folder = 'H:/Data-enhancement-main/Data-enhancement/DataAugForObjectSegmentation/images_json2keshihua'

# 确保目标文件夹存在
if not os.path.exists(target_folder):
    os.makedirs(target_folder)

# 遍历源文件夹中的所有文件
for file_name in os.listdir(source_folder):
    if file_name.endswith('.json'):
        json_path = os.path.join(source_folder, file_name)
        with open(json_path) as json_file:
            data = json.load(json_file)

        # 获取图片路径
        image_path = os.path.join(source_folder, data['imagePath'])

        # 读取图片
        image = cv2.imread(image_path)

        # 遍历所有的标注
        for shape in data['shapes']:
            points = np.array(shape['points'], dtype=np.int32)
            cv2.polylines(image, [points], True, (0, 255, 0), 2)  # 标注为绿色线条

        # 保存标注后的图片
        cv2.imwrite(os.path.join(target_folder, file_name.replace('.json', '.png')), image)

print("标注可视化完成,并保存到指定文件夹。")
相关推荐
那年一路北7 小时前
YOLOv8 自定义目标检测
人工智能·深度学习·yolo·机器学习
陈辛chenxin1 天前
【论文带读(3)】《Real-Time Flying Object Detection with YOLOv8》带读笔记翻译
人工智能·笔记·yolo·目标检测·计算机视觉
牧子川1 天前
【论文解读】Pose2Seg:无检测人体实例分割(附论文地址)
人工智能·计算机视觉·目标跟踪·分割·实例分割·pose2seg
paradoxjun2 天前
RK3588部署YOLOv8(2):OpenCV和RGA实现模型前处理对比
人工智能·opencv·算法·yolo·目标检测·计算机视觉
量子-Alex2 天前
【目标检测】【NeuralPS 2023】Gold-YOLO:通过收集与分发机制实现的高效目标检测器
yolo·目标检测·目标跟踪
zy_destiny3 天前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
国家级退堂鼓3 天前
YOLOv8改进SPFF-LSKA大核可分离核注意力机制
人工智能·python·深度学习·yolo·目标检测·yolov8
MF_AI3 天前
颈椎X光数据集(cervical spine X-ray dataset)
图像处理·人工智能·深度学习·yolo·计算机视觉·spine
灰灰学姐3 天前
yolov8训练模型、测试视频
python·yolo·机器学习
大学生毕业题目4 天前
毕业项目推荐:基于yolov8/yolov5/yolo11的田间杂草检测识别系统(python+卷积神经网络)
开发语言·人工智能·python·yolo·cnn·pyqt·田间杂草