目录
- [1. 结构体类型的声明](#1. 结构体类型的声明)
-
- [1.1 结构体回顾](#1.1 结构体回顾)
-
- [1.1.1 结构的声明](#1.1.1 结构的声明)
- [1.1.2 结构体变量的创建和初始化](#1.1.2 结构体变量的创建和初始化)
- [1.2 结构的特殊声明](#1.2 结构的特殊声明)
- [1.3 结构的自引用](#1.3 结构的自引用)
- [2. 结构体内存对齐](#2. 结构体内存对齐)
-
- [2.1 对齐规则](#2.1 对齐规则)
- [2.2 为什么存在内存对⻬?](#2.2 为什么存在内存对⻬?)
-
- [1. 平台原因 (移植原因):](#1. 平台原因 (移植原因):)
- [2. 性能原因:](#2. 性能原因:)
- [2.3 修改默认对⻬数](#2.3 修改默认对⻬数)
- [3. 结构体传参](#3. 结构体传参)
- [4. 结构体实现位段](#4. 结构体实现位段)
-
- [4.1 什么是位段](#4.1 什么是位段)
- [4.2 位段的内存分配](#4.2 位段的内存分配)
- [4.3 位段的跨平台问题](#4.3 位段的跨平台问题)
- [4.4 位段的应⽤](#4.4 位段的应⽤)
- [4.5 位段使⽤的注意事项](#4.5 位段使⽤的注意事项)
1. 结构体类型的声明
前⾯在操作符详解中,已经学习了结构体的知识,这里再看看。
1.1 结构体回顾
结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.1.1 结构的声明
struct tag
{
member-list;
}variable-list;
例如描述⼀个学⽣:
javascript
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
1.1.2 结构体变量的创建和初始化
javascript
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
};
int main()
{
//按照结构体成员的顺序初始化
struct Stu s = { "张三", 20, "男", "20230818001" };
printf("name: %s\n", s.name);
printf("age : %d\n", s.age);
printf("sex : %s\n", s.sex);
printf("id : %s\n", s.id);
//按照指定的顺序初始化
struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "女"};
printf("name: %s\n", s2.name);
printf("age : %d\n", s2.age);
printf("sex : %s\n", s2.sex);
printf("id : %s\n", s2.id);
return 0;
}
运行结果:
1.2 结构的特殊声明
在声明结构的时候,可以不完全的声明。
⽐如:
//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;
上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;
警告:
编译器会把上⾯的两个声明当成完全不同的两个类型,所以是⾮法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。
1.3 结构的自引用
在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?
⽐如,定义⼀个链表的节点:
struct Node
{
int data;
struct Node next;
};
上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?
仔细分析,其实是不⾏的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会⽆穷的大,是不合理的。
正确的自引用方式:
struct Node
{
int data;
struct Node* next;
};
在结构体⾃引⽤使⽤的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看
下⾯的代码,可⾏吗?
typedef struct
{
int data;
Node* next;
}Node;
答案是不⾏的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使
⽤Node类型来创建成员变量,这是不⾏的。
解决方案如下:定义结构体不要使⽤匿名结构体了
typedef struct Node
{
int data;
struct Node* next;
}Node;
2. 结构体内存对齐
我们已经掌握了结构体的基本使⽤了。
现在我们深⼊讨论⼀个问题:计算结构体的⼤⼩。
这也是⼀个特别热门的考点: 结构体内存对齐
2.1 对齐规则
⾸先得掌握结构体的对齐规则:
- 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处
- 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。
- VS 中默认的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩
- 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)>的整数倍。
- 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结>构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
练习1
javascript
#include <stdio.h>
//练习1
struct S1
{
char c1;
int i;
char c2;
};
int main()
{
printf("%zd\n", sizeof(struct S1));
}
运行结果:
分析:
练习2
javascript
struct S2
{
char c1;
char c2;
int i;
};
int main()
{
printf("%zd\n", sizeof(struct S2));
}
运行结果:
分析:
练习3
javascript
//练习3
struct S3
{
double d;
char c;
int i;
};
int main()
{
printf("%zd\n", sizeof(struct S3));
}
运行结果:
分析:
练习4-结构体嵌套问题
javascript
struct S3
{
double d;
char c;
int i;
};
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
int main()
{
printf("%zd\n", sizeof(struct S4));
}
运行结果:
分析:
2.2 为什么存在内存对⻬?
⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的⼤⼩有了⼀些区别。
2.3 修改默认对⻬数
javascript
#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
//输出的结果是什么?
printf("%zd\n", sizeof(struct S));
return 0;
}
运行结果:
结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。
3. 结构体传参
javascript
#include <stdio.h>
struct S
{
int data[1000];
int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上⾯的 print1 和 print2 函数哪个好些?
答案是:⾸选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐>较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。
4. 结构体实现位段
结构体讲完就得讲讲结构体实现 位段 的能⼒。
4.1 什么是位段
位段的声明和结构是类似的,有两个不同:
- 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。- 位段的成员名后边有⼀个冒号和⼀个数字。
⽐如:
javascript
struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的⼤⼩是多少?
javascript
printf("%zd\n", sizeof(struct A));
运行结果:
4.2 位段的内存分配
- 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
- 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
- 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
javascript
//⼀个例⼦
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?
4.3 位段的跨平台问题
- int 位段被当成有符号数还是⽆符号数是不确定的。
- 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
- 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
- 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利⽤,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。
4.4 位段的应⽤
下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络的畅通是有帮助的。
4.5 位段使⽤的注意事项
位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
javascript
#include <stdio.h>
struct A
{
int _a : 2;
int _b : 5;
int _c : 10;
int _d : 30;
};
int main()
{
struct A sa = { 0 };
//scanf("%d", &sa._b);//这是错误的
//正确的⽰范
int b = 0;
scanf("%d", &b);
sa._b = b;
printf("%d\n", sa._b);
return 0;
}
运行结果: