FastSAM 部署 rknn

基于yolov8(ultralytics)工程导出的FastSAM的onnx模型,后处理和yolov8seg是一样的。

模型和完整测试代码

1 FastSAM 导出 onnx

导出onnx的方式有两种,一种使用FastSAM工程,一种是使用yolov8(ultralytics)工程。本篇博客使用yolov8工程进行导出onnx。导出FastSAM和导出yolov8seg需要修改的地方一样的。本示例使用的是FastSAM-s,效果不是很好。需要修改两个地方。

第一处修改:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处修改:

python 复制代码
        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx代码:

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上运行如下代码:

python 复制代码
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

model = FastSAM('./weights/FastSAM-s.pt')
image_path = './images/test.jpg'
everything_results = model(image_path, retina_masks=True, imgsz=640, conf=0.4, iou=0.9)

2 onnx 测试效果

3 RKNN板端测试效果

rknn仿真测试效果

板端实际效果(颜色配的不是很好,凑合看)

模型输入分辨率640x640,使用芯片rk3588。

相关推荐
Blossom.11814 分钟前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
Love__Tay1 小时前
【学习笔记】Python金融基础
开发语言·笔记·python·学习·金融
有风南来2 小时前
算术图片验证码(四则运算)+selenium
自动化测试·python·selenium·算术图片验证码·四则运算验证码·加减乘除图片验证码
wangjinjin1802 小时前
Python Excel 文件处理:openpyxl 与 pandas 库完全指南
开发语言·python
Yxh181377845543 小时前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
Humbunklung3 小时前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt
火车叼位4 小时前
使用 uv 工具在 Windows 系统快速下载安装与切换 Python
python
心扬4 小时前
python网络编程
开发语言·网络·python·tcp/ip
忧陌6064 小时前
DAY 44 预训练模型
python
点云SLAM4 小时前
PyTorch 中contiguous函数使用详解和代码演示
人工智能·pytorch·python·3d深度学习·contiguous函数·张量内存布局优化·张量操作