FastSAM 部署 rknn

基于yolov8(ultralytics)工程导出的FastSAM的onnx模型,后处理和yolov8seg是一样的。

模型和完整测试代码

1 FastSAM 导出 onnx

导出onnx的方式有两种,一种使用FastSAM工程,一种是使用yolov8(ultralytics)工程。本篇博客使用yolov8工程进行导出onnx。导出FastSAM和导出yolov8seg需要修改的地方一样的。本示例使用的是FastSAM-s,效果不是很好。需要修改两个地方。

第一处修改:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处修改:

python 复制代码
        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx代码:

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上运行如下代码:

python 复制代码
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

model = FastSAM('./weights/FastSAM-s.pt')
image_path = './images/test.jpg'
everything_results = model(image_path, retina_masks=True, imgsz=640, conf=0.4, iou=0.9)

2 onnx 测试效果

3 RKNN板端测试效果

rknn仿真测试效果

板端实际效果(颜色配的不是很好,凑合看)

模型输入分辨率640x640,使用芯片rk3588。

相关推荐
drebander14 分钟前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
威威猫的栗子37 分钟前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
墨染风华不染尘1 小时前
python之开发笔记
开发语言·笔记·python
Dxy12393102161 小时前
python bmp图片转jpg
python
麦麦大数据1 小时前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习
LKID体2 小时前
Python操作neo4j库py2neo使用之创建和查询(二)
数据库·python·neo4j
LKID体2 小时前
Python操作neo4j库py2neo使用之py2neo 删除及事务相关操作(三)
开发语言·python·neo4j
小屁孩大帅-杨一凡2 小时前
Python-flet实现个人视频播放器
开发语言·python·音视频
算家云2 小时前
快速识别模型:simple_ocr,部署教程
开发语言·人工智能·python·ocr·数字识别·检测模型·英文符号识别
Thomas_Cai2 小时前
Python后端flask框架接收zip压缩包方法
开发语言·python·flask