FastSAM 部署 rknn

基于yolov8(ultralytics)工程导出的FastSAM的onnx模型,后处理和yolov8seg是一样的。

模型和完整测试代码

1 FastSAM 导出 onnx

导出onnx的方式有两种,一种使用FastSAM工程,一种是使用yolov8(ultralytics)工程。本篇博客使用yolov8工程进行导出onnx。导出FastSAM和导出yolov8seg需要修改的地方一样的。本示例使用的是FastSAM-s,效果不是很好。需要修改两个地方。

第一处修改:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处修改:

python 复制代码
        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx代码:

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上运行如下代码:

python 复制代码
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

model = FastSAM('./weights/FastSAM-s.pt')
image_path = './images/test.jpg'
everything_results = model(image_path, retina_masks=True, imgsz=640, conf=0.4, iou=0.9)

2 onnx 测试效果

3 RKNN板端测试效果

rknn仿真测试效果

板端实际效果(颜色配的不是很好,凑合看)

模型输入分辨率640x640,使用芯片rk3588。

相关推荐
超级大只老咪8 分钟前
数组的正向存储VS反向存储(Java)
java·开发语言·python
长安牧笛28 分钟前
心理健康情绪日记分析系统,用户输入文字日记后,AI提取情绪关键词,焦虑/愉悦等,生成周情绪波动曲线,并推荐调节建议。
python
艾上编程1 小时前
第三章——爬虫工具场景之Python爬虫实战:学术文献摘要爬取,助力科研高效进行
开发语言·爬虫·python
Hi_kenyon1 小时前
FastAPI+VUE3创建一个项目的步骤模板(二)
python·fastapi
拉普拉斯妖1081 小时前
DAY38 Dataset和DataLoader
python
Michelle80232 小时前
24大数据 16-1 函数复习
python
dagouaofei2 小时前
AI自动生成PPT工具对比分析,效率差距明显
人工智能·python·powerpoint
ku_code_ku2 小时前
python bert_score使用本地模型的方法
开发语言·python·bert
祁思妙想2 小时前
linux常用命令
开发语言·python
流水落花春去也3 小时前
用yolov8 训练,最后形成训练好的文件。 并且能在后续项目使用
python