FastSAM 部署 rknn

基于yolov8(ultralytics)工程导出的FastSAM的onnx模型,后处理和yolov8seg是一样的。

模型和完整测试代码

1 FastSAM 导出 onnx

导出onnx的方式有两种,一种使用FastSAM工程,一种是使用yolov8(ultralytics)工程。本篇博客使用yolov8工程进行导出onnx。导出FastSAM和导出yolov8seg需要修改的地方一样的。本示例使用的是FastSAM-s,效果不是很好。需要修改两个地方。

第一处修改:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处修改:

python 复制代码
        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx代码:

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上运行如下代码:

python 复制代码
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

model = FastSAM('./weights/FastSAM-s.pt')
image_path = './images/test.jpg'
everything_results = model(image_path, retina_masks=True, imgsz=640, conf=0.4, iou=0.9)

2 onnx 测试效果

3 RKNN板端测试效果

rknn仿真测试效果

板端实际效果(颜色配的不是很好,凑合看)

模型输入分辨率640x640,使用芯片rk3588。

相关推荐
大雷神9 分钟前
HarmonyOS 横竖屏切换与响应式布局实战指南
python·深度学习·harmonyos
钅日 勿 XiName26 分钟前
一小时速通pytorch之训练分类器(四)(完结)
人工智能·pytorch·python
青瓷程序设计31 分钟前
水果识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
paopao_wu31 分钟前
目标检测YOLO[02]:YOLOv8 环境安装-Ubuntu
yolo·目标检测·ubuntu
*才华有限公司*1 小时前
基于BERT的文本分类模型训练全流程:从环境搭建到显存优化实战
python
Lxinccode2 小时前
python(59) : 多线程调用大模型ocr提取图片文本
开发语言·python·图片提取文字·批量提取文件·多线程ocr
梁辰兴2 小时前
PyCharm使用了Conda的虚拟环境创建的的Python项目,下载库(包)到该项目的虚拟环境中
python·pycharm·conda·错误·异常·异常报错
自由日记2 小时前
python简单线性回归
开发语言·python·线性回归
强化学习与机器人控制仿真2 小时前
Meta 最新开源 SAM 3 图像视频可提示分割模型
人工智能·深度学习·神经网络·opencv·目标检测·计算机视觉·目标跟踪
Halo_tjn3 小时前
Set集合专项实验
java·开发语言·前端·python