卷积神经网络中间层特征图的可视化

python 复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torchvision import transforms
from PIL import Image


# 定义卷积神经网络模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv = nn.Conv2d(3, 8, kernel_size=3, stride=1, padding=1)
        self.bn = nn.BatchNorm2d(8)
        self.relu = nn.ReLU()
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        x = self.conv(x)
        # x = self.bn(x)
        # x = self.relu(x)
        # x = self.pool(x)
        return x


if __name__ == '__main__':
    # 设置 CPU 张量的随机数种子
    torch.manual_seed(42)

    # 创建模型实例
    model = SimpleCNN()

    # 加载并预处理图片
    img_path = r'E:\photo\123.jpg'
    img = Image.open(img_path).convert('RGB')  # 读取的默认格式为 RGB,这里可去掉 convert()
    preprocess = transforms.Compose([transforms.Resize((960, 960)),
                                     transforms.ToTensor(),
                                     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    img_tensor = preprocess(img).unsqueeze(0)  # (1, C, H, W)

    # 不计算梯度,进行一次前向传播
    with torch.no_grad():
        output = model(img_tensor)

    # 模型输出的图片大小
    print("Output size after conv layer:", output.size())

    # 可视化原始图片
    plt.imshow(img)
    plt.title("Original Image")
    plt.axis('off')
    plt.show()

    # 可视化卷积层后的图片
    for i in range(output.size()[1]):
        plt.subplot(output.size()[1]//4, 4, i+1)
        plt.imshow(output[0, i, :, :].cpu().detach().numpy())
        plt.axis('off')
    plt.tight_layout()
    plt.subplots_adjust(hspace=0.05)
    plt.suptitle('After Conv2d')
    plt.show()

原图大小为:(872, 1280, 3)

原图如下所示:

图片经过卷积层后,得到的特征图大小为:torch.Size([1, 8, 960, 960])

图片经过卷积层后,得到的特征图如下所示:

图片经过 BN 层后,得到的特征图大小为:torch.Size([1, 8, 960, 960])

图片经过 BN 层后,得到的特征图如下所示:

图片经过 ReLU 层后,得到的特征图大小为:torch.Size([1, 8, 960, 960])

图片经过 ReLU 层后,得到的特征图如下所示:

图片经过最大池化层后,得到的特征图大小为:torch.Size([1, 8, 480, 480])

图片经过最大池化层后,得到的特征图如下所示:

PIL 中的 Image.open(img_path) 读取的图片维度为 (W, H, C),读取的图片模式默认为 RGB;

OpenCV 中的 cv2.imread(img_path) 读取的图像维度为 (H, W, C),读取的图片模式默认为 BGR;

Image 图像数据转换为 np.ndarray 时,格式会从 (W, H, C) 转换为 (H, W, C)。

transforms.Resize((960, 960):旨在改变图像的大小,默认使用双线性插值(Bilinear);还支持最近邻插值(Nearest)、双三次插值(Bicubic)。

transforms.ToTensor():将 PIL 图像或 Numpy 数组中的整数像素值转换为 torch.FloatTensor 类型的浮点数;如果 PIL Image 属于 (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) 中的一种图像类型,或者 numpy.ndarray 的数据类型是 np.uint8,则将像素值从 [0, 255] 归一化到 [0.0, 1.0],这是通过将每个像素值除以 255 来实现的;将 [H, W, C] 的图像格式转换为 [C, H, W] 的 tensor 格式。

相关推荐
数据智能老司机1 分钟前
AI产品开发的艺术——发现与优先排序AI机会
人工智能·产品经理·产品
青椒大仙KI114 分钟前
论文笔记 <交通灯> <多智能体>DERLight双重经验回放灯机制
论文阅读·人工智能·深度学习
Trainer210716 分钟前
轻松搭建tensorflow django环境
人工智能·django·tensorflow
苏苏susuus33 分钟前
深度学习:PyTorch自动微分模块
人工智能·pytorch·深度学习
Tadas-Gao42 分钟前
大模型训练与推理显卡全指南:从硬件选型到性能优化
人工智能·机器学习·大模型·llm
kyle~1 小时前
深度学习---ONNX(Open Neural Network Exchange)
人工智能·深度学习
猛犸MAMMOTH1 小时前
Python打卡第54天
pytorch·python·深度学习
飞哥数智坊1 小时前
解锁AI高效协作:从《提问的艺术》提炼6大提问黄金法则
人工智能
梓羽玩Python2 小时前
12K+ Star的离线语音神器!50MB模型秒杀云端API,隐私零成本,20+语种支持!
人工智能·python·github
成都犀牛2 小时前
LangGraph 深度学习笔记:构建真实世界的智能代理
人工智能·pytorch·笔记·python·深度学习