MATLAB构建一些简单的人工数据集

1. 构建一个2维3类的数据集

复制代码
%高斯二维三类  1  3
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 100); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,100);
% % 第三组数据
mu3=[-1.25;1.25]
S3=[.1 0;0 .1]
data3=mvnrnd(mu3,S3,100)
% % 显示数据
 plot(data1(:,1),data1(:, 2),'b+');
 hold on;
 plot(data2(:,1),data2(:,2),'r+');
 plot(data3(:,1),data3(:,2),'g+');
 data=[data1;data2;data3];


2. 构建一个2维5类的数据集

复制代码
%高斯2维5类
N=300;
%数据维度
dim=2;
%混合比例
para_pi=[0.4 0.15 0.15 0.15 0.15];
%第一类数据
mul=[0 0]; % 均值
S1=[1 0;0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[4 4];
S2=[2 -1;-1 2];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-4 4];
S3=[2 1;1 2];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[-4 -4];
S4=[2 -1;-1 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%第五类数据
mu5=[4 -4];
S5=[2 1;1 2];
data5=mvnrnd(mu5,S5,para_pi(5)*N);
%显示数据
plot(data1(:,1),data1(:, 2),'bo');
hold on;
plot(data2(:,1),data2(:,2),'ro');
plot(data3(:,1),data3(:,2),'go');
plot(data4(:,1),data4(:,2),'ko');
plot(data5(:,1),data5(:,2),'mo');
data = [data1, ones(para_pi(1)*N,1);
    data2, 2*ones(para_pi(2)*N,1); 
    data3, 3*ones(para_pi(3)*N,1);
    data4, 4*ones(para_pi(4)*N,1); 
    data5, 5*ones(para_pi(5)*N,1)];


3. 构建一个3维3类的数据集

复制代码
%高斯数据三维三类
%数据规模
N=500;
%数据维度
dim=3;
%混合比例
para_pi=[0.2 0.3 0.5];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[-3 3 3];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[3 3 0];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'r*');
plot3(data3(:,1),data3(:,2),data3(:,3),'gx');
data = [data1, ones(para_pi(1)*N,1); 
    data2, 2*ones(para_pi(2)*N,1);
    data3, 3*ones(para_pi(3)*N,1)];


4. 构建一个3维4类的数据集

复制代码
%高斯数据三维四类
%数据规模
N=300;
%数据维度
dim=3;
%混合比例
para_pi=[0.1 0.2 0.3 0.4];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[3 3 2];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-3 3 1];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[0 -3 3];
S4=[2 1 0;1 1 0;0 0 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'ro');
plot3(data3(:,1),data3(:,2),data3(:,3),'go');
plot3(data4(:,1),data4(:,2),data4(:,3),'ko');
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1); data4, 4*ones(para_pi(4)*N,1)];
%将数据集存入文件
相关推荐
vvoennvv29 分钟前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
YJlio40 分钟前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
武子康42 分钟前
大数据-169 Elasticsearch 入门到可用:索引/文档 CRUD 与搜索最小示例
大数据·后端·elasticsearch
v***91301 小时前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
玦尘、1 小时前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
RoboWizard1 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
霍格沃兹测试开发学社-小明1 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇1 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
xwill*1 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
网安INF1 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归