MATLAB构建一些简单的人工数据集

1. 构建一个2维3类的数据集

复制代码
%高斯二维三类  1  3
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 100); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,100);
% % 第三组数据
mu3=[-1.25;1.25]
S3=[.1 0;0 .1]
data3=mvnrnd(mu3,S3,100)
% % 显示数据
 plot(data1(:,1),data1(:, 2),'b+');
 hold on;
 plot(data2(:,1),data2(:,2),'r+');
 plot(data3(:,1),data3(:,2),'g+');
 data=[data1;data2;data3];


2. 构建一个2维5类的数据集

复制代码
%高斯2维5类
N=300;
%数据维度
dim=2;
%混合比例
para_pi=[0.4 0.15 0.15 0.15 0.15];
%第一类数据
mul=[0 0]; % 均值
S1=[1 0;0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[4 4];
S2=[2 -1;-1 2];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-4 4];
S3=[2 1;1 2];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[-4 -4];
S4=[2 -1;-1 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%第五类数据
mu5=[4 -4];
S5=[2 1;1 2];
data5=mvnrnd(mu5,S5,para_pi(5)*N);
%显示数据
plot(data1(:,1),data1(:, 2),'bo');
hold on;
plot(data2(:,1),data2(:,2),'ro');
plot(data3(:,1),data3(:,2),'go');
plot(data4(:,1),data4(:,2),'ko');
plot(data5(:,1),data5(:,2),'mo');
data = [data1, ones(para_pi(1)*N,1);
    data2, 2*ones(para_pi(2)*N,1); 
    data3, 3*ones(para_pi(3)*N,1);
    data4, 4*ones(para_pi(4)*N,1); 
    data5, 5*ones(para_pi(5)*N,1)];


3. 构建一个3维3类的数据集

复制代码
%高斯数据三维三类
%数据规模
N=500;
%数据维度
dim=3;
%混合比例
para_pi=[0.2 0.3 0.5];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[-3 3 3];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[3 3 0];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'r*');
plot3(data3(:,1),data3(:,2),data3(:,3),'gx');
data = [data1, ones(para_pi(1)*N,1); 
    data2, 2*ones(para_pi(2)*N,1);
    data3, 3*ones(para_pi(3)*N,1)];


4. 构建一个3维4类的数据集

复制代码
%高斯数据三维四类
%数据规模
N=300;
%数据维度
dim=3;
%混合比例
para_pi=[0.1 0.2 0.3 0.4];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[3 3 2];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-3 3 1];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[0 -3 3];
S4=[2 1 0;1 1 0;0 0 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'ro');
plot3(data3(:,1),data3(:,2),data3(:,3),'go');
plot3(data4(:,1),data4(:,2),data4(:,3),'ko');
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1); data4, 4*ones(para_pi(4)*N,1)];
%将数据集存入文件
相关推荐
蹦蹦跳跳真可爱58915 分钟前
Python----NLP自然语言处理(中文分词器--jieba分词器)
开发语言·人工智能·python·自然语言处理·中文分词
蹦蹦跳跳真可爱58924 分钟前
Python----OpenCV(图像分割——彩色图像分割,GrabCut算法分割图像)
开发语言·图像处理·人工智能·python·opencv·计算机视觉
吃手机用谁付的款29 分钟前
基于hadoop的竞赛网站日志数据分析与可视化(下)
大数据·hadoop·python·信息可视化·数据分析
线条11 小时前
Spark 单机模式安装与测试全攻略
大数据·分布式·spark
老周聊架构1 小时前
大数据领域开山鼻祖组件Hadoop核心架构设计
大数据
charley.layabox7 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
TDengine (老段)7 小时前
TDengine 使用最佳实践(2)
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
DFRobot智位机器人7 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
Deng9452013148 小时前
基于大数据的电力系统故障诊断技术研究
大数据·matplotlib·深度特征提取·随机森林分类算法·标签编码
想成为风筝9 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt