MATLAB构建一些简单的人工数据集

1. 构建一个2维3类的数据集

复制代码
%高斯二维三类  1  3
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 100); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,100);
% % 第三组数据
mu3=[-1.25;1.25]
S3=[.1 0;0 .1]
data3=mvnrnd(mu3,S3,100)
% % 显示数据
 plot(data1(:,1),data1(:, 2),'b+');
 hold on;
 plot(data2(:,1),data2(:,2),'r+');
 plot(data3(:,1),data3(:,2),'g+');
 data=[data1;data2;data3];


2. 构建一个2维5类的数据集

复制代码
%高斯2维5类
N=300;
%数据维度
dim=2;
%混合比例
para_pi=[0.4 0.15 0.15 0.15 0.15];
%第一类数据
mul=[0 0]; % 均值
S1=[1 0;0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[4 4];
S2=[2 -1;-1 2];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-4 4];
S3=[2 1;1 2];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[-4 -4];
S4=[2 -1;-1 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%第五类数据
mu5=[4 -4];
S5=[2 1;1 2];
data5=mvnrnd(mu5,S5,para_pi(5)*N);
%显示数据
plot(data1(:,1),data1(:, 2),'bo');
hold on;
plot(data2(:,1),data2(:,2),'ro');
plot(data3(:,1),data3(:,2),'go');
plot(data4(:,1),data4(:,2),'ko');
plot(data5(:,1),data5(:,2),'mo');
data = [data1, ones(para_pi(1)*N,1);
    data2, 2*ones(para_pi(2)*N,1); 
    data3, 3*ones(para_pi(3)*N,1);
    data4, 4*ones(para_pi(4)*N,1); 
    data5, 5*ones(para_pi(5)*N,1)];


3. 构建一个3维3类的数据集

复制代码
%高斯数据三维三类
%数据规模
N=500;
%数据维度
dim=3;
%混合比例
para_pi=[0.2 0.3 0.5];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[-3 3 3];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[3 3 0];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'r*');
plot3(data3(:,1),data3(:,2),data3(:,3),'gx');
data = [data1, ones(para_pi(1)*N,1); 
    data2, 2*ones(para_pi(2)*N,1);
    data3, 3*ones(para_pi(3)*N,1)];


4. 构建一个3维4类的数据集

复制代码
%高斯数据三维四类
%数据规模
N=300;
%数据维度
dim=3;
%混合比例
para_pi=[0.1 0.2 0.3 0.4];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[3 3 2];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-3 3 1];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[0 -3 3];
S4=[2 1 0;1 1 0;0 0 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'ro');
plot3(data3(:,1),data3(:,2),data3(:,3),'go');
plot3(data4(:,1),data4(:,2),data4(:,3),'ko');
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1); data4, 4*ones(para_pi(4)*N,1)];
%将数据集存入文件
相关推荐
说私域3 分钟前
AI智能名片S2B2C商城小程序在微商中的应用与影响
大数据·人工智能·小程序·流量运营
恒拓高科WorkPlus4 分钟前
BeeWorks SDK即将上线:快速构建企业级安全通讯体系
网络·人工智能·安全
沛沛老爹6 分钟前
Web开发者转型AI安全核心:Agent Skills沙盒环境与威胁缓解实战
java·前端·人工智能·安全·rag·web转型升级
薛不痒8 分钟前
计算机视觉opencv之图像透视转换&角点检测&sift特征检测&指纹识别
人工智能·opencv·计算机视觉
2501_944332168 分钟前
如何联系北京的金融业务流程外包服务商?
大数据·人工智能·金融
m0_466525298 分钟前
重新定义智能出行体验 东软与Cerence AI达成战略合作
人工智能·汽车
CHrisFC10 分钟前
环境第三方检测机构LIMS系统选型:从合规基础到效率制胜
java·大数据·人工智能
Ro Jace12 分钟前
A Real-Time Cross Correlator for Neurophysiological Research
人工智能·python·算法
小五传输13 分钟前
探秘主流的内外网文件传输方式,解锁高效安全共享新途径
大数据·运维·安全
ai产品老杨18 分钟前
企业级AI视频管理平台,内置算法商城,集群管理、标注平台开源了
人工智能·开源·音视频