MATLAB构建一些简单的人工数据集

1. 构建一个2维3类的数据集

复制代码
%高斯二维三类  1  3
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 100); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,100);
% % 第三组数据
mu3=[-1.25;1.25]
S3=[.1 0;0 .1]
data3=mvnrnd(mu3,S3,100)
% % 显示数据
 plot(data1(:,1),data1(:, 2),'b+');
 hold on;
 plot(data2(:,1),data2(:,2),'r+');
 plot(data3(:,1),data3(:,2),'g+');
 data=[data1;data2;data3];


2. 构建一个2维5类的数据集

复制代码
%高斯2维5类
N=300;
%数据维度
dim=2;
%混合比例
para_pi=[0.4 0.15 0.15 0.15 0.15];
%第一类数据
mul=[0 0]; % 均值
S1=[1 0;0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[4 4];
S2=[2 -1;-1 2];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-4 4];
S3=[2 1;1 2];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[-4 -4];
S4=[2 -1;-1 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%第五类数据
mu5=[4 -4];
S5=[2 1;1 2];
data5=mvnrnd(mu5,S5,para_pi(5)*N);
%显示数据
plot(data1(:,1),data1(:, 2),'bo');
hold on;
plot(data2(:,1),data2(:,2),'ro');
plot(data3(:,1),data3(:,2),'go');
plot(data4(:,1),data4(:,2),'ko');
plot(data5(:,1),data5(:,2),'mo');
data = [data1, ones(para_pi(1)*N,1);
    data2, 2*ones(para_pi(2)*N,1); 
    data3, 3*ones(para_pi(3)*N,1);
    data4, 4*ones(para_pi(4)*N,1); 
    data5, 5*ones(para_pi(5)*N,1)];


3. 构建一个3维3类的数据集

复制代码
%高斯数据三维三类
%数据规模
N=500;
%数据维度
dim=3;
%混合比例
para_pi=[0.2 0.3 0.5];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[-3 3 3];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[3 3 0];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'r*');
plot3(data3(:,1),data3(:,2),data3(:,3),'gx');
data = [data1, ones(para_pi(1)*N,1); 
    data2, 2*ones(para_pi(2)*N,1);
    data3, 3*ones(para_pi(3)*N,1)];


4. 构建一个3维4类的数据集

复制代码
%高斯数据三维四类
%数据规模
N=300;
%数据维度
dim=3;
%混合比例
para_pi=[0.1 0.2 0.3 0.4];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[3 3 2];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-3 3 1];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[0 -3 3];
S4=[2 1 0;1 1 0;0 0 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'ro');
plot3(data3(:,1),data3(:,2),data3(:,3),'go');
plot3(data4(:,1),data4(:,2),data4(:,3),'ko');
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1); data4, 4*ones(para_pi(4)*N,1)];
%将数据集存入文件
相关推荐
feasibility.1 小时前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016
Elastic 中国社区官方博客1 小时前
易捷问数(NewmindExAI)平台解决 ES 升级后 AI 助手与 Attack Discovery 不正常问题
大数据·运维·数据库·人工智能·elasticsearch·搜索引擎·ai
冬奇Lab1 小时前
一天一个开源项目(第21篇):Claude-Mem - 为 Claude Code 打造的持久化记忆压缩系统
人工智能·开源·claude
大任视点1 小时前
星云天启发布革命性AI智慧家居体系:开启未来家居新纪元
人工智能
jarvisuni1 小时前
GLM5带10个题目挑战Claude4.6编程宝座 !
人工智能·ai编程
YunchengLi2 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
开开心心就好2 小时前
一键加密隐藏视频,专属格式播放工具
java·linux·开发语言·网络·人工智能·macos
呆萌很2 小时前
BGR和RGB区别
人工智能
L念安dd2 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python