MATLAB构建一些简单的人工数据集

1. 构建一个2维3类的数据集

%高斯二维三类  1  3
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 100); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,100);
% % 第三组数据
mu3=[-1.25;1.25]
S3=[.1 0;0 .1]
data3=mvnrnd(mu3,S3,100)
% % 显示数据
 plot(data1(:,1),data1(:, 2),'b+');
 hold on;
 plot(data2(:,1),data2(:,2),'r+');
 plot(data3(:,1),data3(:,2),'g+');
 data=[data1;data2;data3];


2. 构建一个2维5类的数据集

%高斯2维5类
N=300;
%数据维度
dim=2;
%混合比例
para_pi=[0.4 0.15 0.15 0.15 0.15];
%第一类数据
mul=[0 0]; % 均值
S1=[1 0;0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[4 4];
S2=[2 -1;-1 2];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-4 4];
S3=[2 1;1 2];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[-4 -4];
S4=[2 -1;-1 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%第五类数据
mu5=[4 -4];
S5=[2 1;1 2];
data5=mvnrnd(mu5,S5,para_pi(5)*N);
%显示数据
plot(data1(:,1),data1(:, 2),'bo');
hold on;
plot(data2(:,1),data2(:,2),'ro');
plot(data3(:,1),data3(:,2),'go');
plot(data4(:,1),data4(:,2),'ko');
plot(data5(:,1),data5(:,2),'mo');
data = [data1, ones(para_pi(1)*N,1);
    data2, 2*ones(para_pi(2)*N,1); 
    data3, 3*ones(para_pi(3)*N,1);
    data4, 4*ones(para_pi(4)*N,1); 
    data5, 5*ones(para_pi(5)*N,1)];


3. 构建一个3维3类的数据集

%高斯数据三维三类
%数据规模
N=500;
%数据维度
dim=3;
%混合比例
para_pi=[0.2 0.3 0.5];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[-3 3 3];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[3 3 0];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'r*');
plot3(data3(:,1),data3(:,2),data3(:,3),'gx');
data = [data1, ones(para_pi(1)*N,1); 
    data2, 2*ones(para_pi(2)*N,1);
    data3, 3*ones(para_pi(3)*N,1)];


4. 构建一个3维4类的数据集

%高斯数据三维四类
%数据规模
N=300;
%数据维度
dim=3;
%混合比例
para_pi=[0.1 0.2 0.3 0.4];
%第一类数据
mul=[0 0 0]; % 均值
S1=[1 0 0;0 1 0;0 0 1]; % 协方差
data1=mvnrnd(mul, S1, para_pi(1)*N); % 产生高斯分布数据
%第二类数据
mu2=[3 3 2];
S2=[2 -1 0;-1 1 0;0 0 1];
data2=mvnrnd(mu2,S2,para_pi(2)*N);
%第三类数据
mu3=[-3 3 1];
S3=[2 1 0;1 2 0;0 0 1];
data3=mvnrnd(mu3,S3,para_pi(3)*N);
%第四类数据
mu4=[0 -3 3];
S4=[2 1 0;1 1 0;0 0 2];
data4=mvnrnd(mu4,S4,para_pi(4)*N);
%显示数据
plot3(data1(:,1),data1(:, 2),data1(:,3),'bo');
hold on;
grid on
xlabel('x');
ylabel('y');
zlabel('z');
plot3(data2(:,1),data2(:,2),data2(:,3),'ro');
plot3(data3(:,1),data3(:,2),data3(:,3),'go');
plot3(data4(:,1),data4(:,2),data4(:,3),'ko');
data = [data1, ones(para_pi(1)*N,1); data2, 2*ones(para_pi(2)*N,1); data3, 3*ones(para_pi(3)*N,1); data4, 4*ones(para_pi(4)*N,1)];
%将数据集存入文件
相关推荐
池央1 小时前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年1 小时前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰1 小时前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn1 小时前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
FksLiao1 小时前
Superset配置Report & Alert实践及二次开发实践
大数据·superset
taoqick3 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52353 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究4 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型4 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas