377.组合总和Ⅳ
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
示例 2:
输入:nums = [9], target = 3
输出:0
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
nums
中的所有元素 互不相同1 <= target <= 1000
思路
这道题也是经典的完全背包问题,区别在于,组成target的零钱组合的排列顺序不一样也会算进组合总数,所以这道题本质求的是排列,而之前的题目求的是总和。
首先确定dp数组,定义一个大小为amount+1的一维dp数组,dp[i]表示能够组成总和i的组合个数。dp[0]初始化为1,dp数组的递推公式为dp[j]=d[j]+dp[j-nums[i]](当j>=nums[i])
但这其实是求组合数的思路,没有考虑到顺序的问题,所以我们应该在递推过程中先遍历target再遍历nums,这样对于每一种背包大小,nums中每个小于背包大小的值都会被考虑作为元素之和=背包大小的最后一个元素,所以不同顺序都会被考虑。
代码
java
class Solution {
public int combinationSum4(int[] nums, int target) {
int n=nums.length;
int[] dp=new int[target+1];
dp[0]=1;
for(int i=1;i<=target;i++){
for(int j=1;j<=n;j++){
if(i>=nums[j-1]){
dp[i]+=dp[i-nums[j-1]];
}
}
}
return dp[target];
}
}
322.零钱兑换
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
思路
和474.一和零的思路差不多,区别在于这题求的是最小长度,所以需要在dp数组初始化上做一些改变。
首先定义一个一维dp数组,dp[i]表示可以凑成金额i所需的最小硬币个数。然后我们再考虑怎样初始化,首先组成金额0不需要选择任何硬币,所以dp[0]=0,然后若是要找出所需硬币的最小值,所有其它值都应该初始化为最大值+1,以便判断是否存在一种组合。
然后是递推公式,首先遍历每个硬币,然后由1到amount遍历每一个金额大小,如果金额大小大于当前硬币大小,则将dp[金额大小]更新为它与dp[金额大小-硬币面值]+1之间的较小值。最终判断dp[amount]若大于amount则返回-1,否则返回dp[amount]
代码
java
class Solution {
public int coinChange(int[] coins,int amount){
int n=coins.length;
int[] dp=new int[amount+1];
Arrays.fill(dp,amount+1);
dp[0]=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=amount;j++){
if(j>=coins[i-1]){
dp[j]=Math.min(dp[j],dp[j-coins[i-1]]+1);
}
}
}
return dp[amount]>amount?-1:dp[amount];
}
}