基于大模型和RAG技术实现的开源项目

基于大模型和RAG技术实现的开源项目

为解决大模型的不足,使用RAG技术增强大模型生成内容的针对性和可读性能力,有很多不错的开源项目。例如下面的项目。

1 ragflow

优点:可以对文档和知识库进行管理,构建不同的知识库,支持Ollama和API-key。

数据库使用的是ElasticSearch、MySQL和minio。

复制代码
# 官网
https://ragflow.io/

# Github
https://github.com/infiniflow/ragflow

2 AnythingLLM

优点:具有客户端便于本地管理数据,支持Ollama和API-key;缺点:对本地的电脑配置要求较高。

数据库默认使用的是lancedb。

复制代码
# 官网
https://useanything.com/

# Github
https://github.com/Mintplex-Labs/anything-llm

3 fastgpt

优点:定位知识库搜索和生成,可以快速构建平台,提供了一键部署。安装过程可能较为费劲。

数据库使用的是MongoDB。

复制代码
# 官网
https://fastgpt.in/

# Github
https://github.com/labring/FastGPT

4 QAnything

优点:使用BGE向量引擎完成文本向量化,提供可视化和API,中文支持较好。

数据库使用的是milvus、MySQL和minio。

复制代码
# 官网
https://qanything.ai/

# Github
https://github.com/netease-youdao/QAnything

5 MaxKB

优点:支持Ollama和API-key,支持用户管理等,使用浏览器完成项目;安装最简单的项目。

数据库使用的是PostgreSQL和PGVector(PGVector 是一个基于 PostgreSQL 的扩展插件,为用户提供了一套强大的向量存储和查询的功能)

复制代码
# Github
https://github.com/1Panel-dev/MaxKB
相关推荐
York·Zhang4 小时前
Ollama:在本地运行大语言模型的利器
人工智能·语言模型·自然语言处理·ollama
reesn4 小时前
nanochat大语言模型讲解一
人工智能·语言模型·自然语言处理
leafff1235 小时前
一文了解-大语言模型训练 vs 推理:硬件算力需求数据对比
人工智能·语言模型·自然语言处理
cooldream20096 小时前
构建智能知识库问答助手:LangChain与大语言模型的深度融合实践
人工智能·语言模型·langchain·rag
SEO_juper10 小时前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销
HPC_C10 小时前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
码界奇点11 小时前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马11 小时前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
喜欢吃豆14 小时前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp