Value-Based Reinforcement Learning(2)

Temporal Difference (TD) Learning

上节已经提到了如果我们有DQN,那么agent就知道每一步动作如何做了,那么DQN如何训练那?这里面使用TD算法。

简略分析:

的估计

的估计

所以:

Deep Reinforcement Learning :

Prediction :

TD Target :

Loss :

Gradient Desent : ,做梯度下降是为了让loss减少

相关推荐
用户5191495848451 分钟前
Ash框架授权绕过漏洞分析:当绕过策略条件评估为真时
人工智能·aigc
用户5191495848452 分钟前
Bedrock AgentCore Python SDK:零基础设施部署AI代理的终极方案
人工智能·aigc
Maynor99610 分钟前
全网唯一!独家支持 Grok4 Heavy模型 ,教你在国内使用Heavy模型!
人工智能
Ai1731639157920 分钟前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
一水鉴天38 分钟前
整体设计 定稿 之1 devOps 中台的 结论性表述(豆包助手)
服务器·数据库·人工智能
XUA1 小时前
如何在服务器上使用Codex
人工智能
咚咚王者1 小时前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
Mintopia1 小时前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown1 小时前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人2 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计