Python 全栈体系【四阶】(五十三)

第五章 深度学习

十二、光学字符识别(OCR)

2. 文字检测技术

2.3 DB(2020)

DB全称是Differentiable Binarization(可微分二值化),是近年提出的利用图像分割方法进行文字检测的模型。前文所提到的模型,使用一个水平矩形框或带角度的矩形框对文字进行定位,这种定位方式无法应用于弯曲文字和不规范分布文字的检测。DB模型利用图像分割方法,预测出每个像素的类别(是文字/不是文字),可以用于任意形状的文字检测。如下图所示:


左图:原图;右图:检测结果,红色部分为预测成文字的像素区域,蓝色为非文字像素区域

2.3.1 基本流程

DB之前的一些基于图像分割的文字检测模型,识别原理如上图蓝色箭头所标记流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率;

  • 第二步,根据第一步生成的概率,和某个固定阈值进行比较,产生一个二值化图;

  • 第三步,采用一些启发式技术(例如像素聚类)将像素分组为文本示例。

DB模型的流程如上图红色箭头所示流程:

  • 第一步,对原图进行分割,预测出每个像素的属于文本/非文本区域的概率。同时,预测一个threshold map(阈值图)

  • 第二步,采用第一步预测的概率和预测的阈值进行比较(不是直接和阈值比较,而是通过构建一个公式进行计算),根据计算结果,得到二值化图。在计算二值化图过程中,采用了一种二值化的近似函数,称为可微分二值化(Differentiable Binarization),在训练过程中,该函数完全可微分;

  • 第三步,根据二值化结果生成分割结果。

2.3.2 标签值生成

对于每个经过原始标记的样本(上图中第一张图像),采用Vatti clipping algorithm算法(一种用于计算多边形裁剪的算法)对多边形进行缩放,得到缩放后的多边形作为文字边沿(如上图中第二张图像绿色、蓝色多边形所示)。计算公式:

D = A ( 1 − r 2 ) L D = \frac{A(1 - r^2)}{L} D=LA(1−r2)

其中,D是收缩放量,A为多边形面积,L为多边形周长,r是缩放系数,设置为0.4. 根据计算出的偏移量D进行缩小,得到缩小的多边形(第二张图像蓝色边沿所示);根据偏移量D放大,得到放大的多边形(第二张图像绿色边沿所示),两个边沿间的部分就是文字边界。

2.3.3 模型结构

Differentiable Binarization模型结构如下图所示:

模型经过卷积,得到不同降采样比率的特征图,经过特征融合后,产生一组分割概率图、一组阈值预测图,然后微分二值化算法做近似二值化处理,得到预测二值化图。传统的二值化方法一般采用阈值分割法,计算公式为:

B i , j = { 1 , i f P i , j ≥ t 0 , o t h e r w i s e (1) B_{i, j} = \begin{cases} 1,\quad if \ P_{i,j} \ge t \\ 0, \quad otherwise \end{cases} \tag{1} Bi,j={1,if Pi,j≥t0,otherwise(1)

上式描述的二值化方法是不可微分的,导致在训练期间无法与分割网络部分一起优化,为了解决这个问题,DB模型采用了近似阶跃函数的、可微分二值化函数。函数定义如下:

B ^ i , j = 1 1 + e − k ( P i , j − T i , j ) \hat B_{i, j} = \frac{1}{1+e^{-k(P_{i,j} - T_{i, j})}} B^i,j=1+e−k(Pi,j−Ti,j)1

其中, P i , j P_{i,j} Pi,j表示预测概率, T i , j T_{i, j} Ti,j表示阈值,两个值相减后经过系数 K K K放大,当预测概率越大于阈值,则输出值越逼近1。


标准二值化函数与可微分二值化函数比较。SB:standard binarization其梯度在0值被截断无法进行有效地回传。DB:differentiable binarization是一个可微分的曲线

python 复制代码
# 可谓分二值化函数示例
import math

P1 = 0.6 # 预测概率1
P2 = 0.4 # 预测概率2
T = 0.5  # 阈值
K = 50

B1 = 1.0 / (1 + pow(math.e, -K * (P1 - T)))
print("B1:", B1) # B1:0.9933  趋近于1

B2 = 1.0 / (1 + pow(math.e, -K * (P2 - T)))
print("B2:", B2) # B2:0.00669 趋近于0
2.3.4 损失函数

DB模型损失函数如下所示:

L = L s + α × L b + β × L t L = L_s + \alpha \times L_b + \beta \times L_t L=Ls+α×Lb+β×Lt

其中, L s L_s Ls是预测概率图的loss部分, L b L_b Lb是二值图的loss部分, α \alpha α和 β \beta β值分别设置为1和10. L s L_s Ls和 L b L_b Lb均采用二值交叉熵:

L s = L b = ∑ i ∈ S l y i l o g x i + ( 1 − y i ) l o g ( 1 − x i ) L_s = L_b = \sum_{i \in S_l} y_i log x_i + (1 - y_i) log(1-x_i) Ls=Lb=i∈Sl∑yilogxi+(1−yi)log(1−xi)

上式中 S l S_l Sl是样本集合,正负样本比例为1:3.

L t Lt Lt指经过膨胀后的多边形区域中的像素预测结果和标签值之间的 L 1 L1 L1距离之和:

L t = ∑ i ∈ R d ∣ y i ∗ − x i ∗ ∣ L_t = \sum_{i \in R_d} |y_i ^* - x_i ^*| Lt=i∈Rd∑∣yi∗−xi∗∣

R d R_d Rd值膨胀区域 G d G_d Gd内的像素索引, y i ∗ y_i ^* yi∗是阈值图的标签值。

2.3.5 涉及到的数据集

模型在以下6个数据集下进行了实验:

  • SynthText:合成数据集,包含80万张图像,用于模型训练
  • MLT-2017:多语言数据集,包含9种语言,7200张训练图像,1800张验证图像及9000张测试图像,用于模型微调
  • ICDAR 2015:包含1000幅训练图像和500幅测试图像,分辨率720*1280,提供了单词级别标记
  • MSRA-TD500:包含中英文的多语言数据集,300张训练图像及200张测试图像
  • CTW1500:专门用于弯曲文本的数据集,1000个训练图像和500个测试图像,文本行级别标记
  • Total-Text:包含各种形状的文本,及水平、多方向和弯曲文字,1255个训练图像和300个测试图像,单词级别标记

为了扩充数据量,论文采用了随机旋转(-10°~10°角度内)、随机裁剪、随机翻转等策略进行数据增强。


对各种形状的文本实例的一些可视化结果,包括弯曲文本、多向文本、垂直文本和长文本行。对于每个单元,右上角是阈值映射;右下角是概率图。

2.3.6 效果
  • 不同设置结果比较,"DConv"表示可变形卷积。"P"、"R"和"F"分别表示精度、召回率和F度量。
  • Total-Text数据集下测试结果,括号中的值表示输入图像的高度,"*"表示使用多尺度进行测试,"MTS"和"PSE"是Mask TextSpotter和PSENet的缩写
  • CTW1500数据集下测试结果。括号中的值表示输入图像的高度。
  • ICDAR 2015数据集下测试结果。括号中的值表示输入图像的高度,"TB"和"PSE"是TextBoxes++和PSENet的缩写。
  • MSRA-TD500数据集下测试结果。括号中的值表示输入图像的高度。
  • MLT-2017数据集下测试结果。"PSE"是PSENet的缩写。
2.3.7 结论
  • 能有效检测弯曲文本、不规范分布文本
  • 具有较好的精度和速度
  • 局限:不能处理文本中包含文本的情况
相关推荐
AGG_Chan12 分钟前
flutter专栏--深入了解widget原理
开发语言·javascript·flutter
Darenm1111 小时前
JavaScript事件流:冒泡与捕获的深度解析
开发语言·前端·javascript
whltaoin1 小时前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
wjs20241 小时前
jEasyUI 自定义窗口工具栏
开发语言
二十雨辰1 小时前
vite与ts的结合
开发语言·前端·vue.js
xiaohanbao091 小时前
Transformer架构与NLP词表示演进
python·深度学习·神经网络
亦良Cool1 小时前
如何部署一个Java项目
java·开发语言
沐知全栈开发2 小时前
JavaScript 输出
开发语言
love530love2 小时前
【笔记】 Podman Desktop 中部署 Stable Diffusion WebUI (GPU 支持)
人工智能·windows·笔记·python·容器·stable diffusion·podman
程序员晚枫2 小时前
Python 3.14正式发布!这5大新特性太炸裂了
python