【Hive SQL 每日一题】行列转换

文章目录

行转列

测试数据:

sql 复制代码
DROP TABLE IF EXISTS student_scores;

CREATE TABLE student_scores (
    student_id INT,
    subject STRING,
    score INT
);


INSERT INTO student_scores (student_id, subject, score) VALUES
(1, 'Math', 85),
(1, 'English', 78),
(1, 'Science', 92),
(2, 'Math', 88),
(2, 'English', 76),
(2, 'Science', 81),
(3, 'Math', 90),
(3, 'English', 82),
(3, 'Science', 89);

表的结构以及数据展示如下:

student_id subject score
1 Math 85
1 English 78
1 Science 92
2 Math 88
2 English 76
2 Science 81
3 Math 90
3 English 82
3 Science 89

根据上面的学生成绩表,将其中的行转换成列进行展示,如下所示:

student_id math english science
1 85 78 92
2 88 76 81
... ... ... ...

这个需求主要从两个方面切入:

  • 因为是统计每名学生的成绩,所以按学生进行分组。

  • 行转列操作,其实就是将行数据通过列的方式进行查询展示而已,这里将行转为列的数据共有 3 列,分别代表每名同学各科的成绩,我们只需要在统计时加入判断条件即可,每列固定求某科的成绩,如果不是该科则用 0 或者空值替代,这样就可以轻松完成需求啦。

sql 复制代码
select
  student_id,
  sum(if(subject="Math",score,0)) math,
  sum(if(subject="English",score,0)) english,
  sum(if(subject="Science",score,0)) science
from
    student_scores
group by
    student_id;

输出结果如下:

列传行

现在变换一下需求,将学生成绩表中的数据列转换为行,测试数据:

sql 复制代码
DROP TABLE IF EXISTS student_scores_pivoted;
CREATE TABLE student_scores_pivoted (
    student_id INT,
    math INT,
    english INT,
    science INT
);

INSERT INTO student_scores_pivoted VALUES
(1, 85, 78, 92),
(2, 88, 76, 81),
(3, 90, 82, 89);

表的结构以及数据展示如下:

student_id Math English Science
1 85 78 92
2 88 76 81
3 90 82 89

我们需要将其转换为如下结构:

student_id subject score
1 Math 85
1 English 78
1 Science 92
2 Math 88
2 English 76
2 Science 81
3 Math 90
3 English 82
3 Science 89

这里使用到了 lateral view + posexplode 的方式,将表的一列扩展到多行,从而完成列转行的需求。

相较于传统的 lateral view + explode 扩展方式,posexplode 会返回两个参数,其中第一个参数表示索引,第二个参数才是其对应的值。

sql 复制代码
select
    student_id,
    subject_name_list,
    subject_list
from
    (select
        student_id,
        concat_ws(',',"Math","English","Science") subject_name,
        concat_ws(',',cast(math as string),cast(english as string),cast(science as string)) subject
    from
        student_scores_pivoted)t1 
    lateral view posexplode(split(subject,",")) tmp1 as pos1,subject_list
    lateral view posexplode(split(subject_name,",")) tmp2 as pos2,subject_name_list
where
    tmp1.pos1 = tmp2.pos2;

输出结果如下:

explodeposexplode 的区别:

sql 复制代码
-- explode 主要用于将一个包含多个元素的列转换为多行,每行对应一个元素。
SELECT explode(array(1, 2, 3));
-- 结果为:
1
2
3

-- posexplode 与 explode 类似,但它不仅返回数组中的值,还返回值在数组中的位置(索引)。
SELECT posexplode(array(1, 2, 3));
-- 结果为:
0  1
1  2
2  3

那么这里为什么使用 posexplode 而不是 explode 呢?

如果在这里使用 explode,那么会导致扩张多次(因为在这里使用了两次 explode3*3 最终会将每行扩张 9 次,形成笛卡尔积),变成如下所示的结果:

所以在这里并不使用 explode,推荐使用另一个函数 posexplode,虽然它也会导致笛卡尔积,但可以根据索引设置条件进行过滤:

下面将来讲述这些笛卡尔积数据产生的原因,以及过滤条件该如何设置。

在只使用一个扩展函数时,并不会产生笛卡尔积,如下所示:

如果同时使用两个扩展函数,那么就会产生笛卡尔积,会随着后续每行的数据量成倍数增长,如下所示:

在使用 posexplode 函数形成笛卡尔积后,我们可以通过设置 where 条件来进行过滤,取到对应的数据。

通过观察可以发现,只有当两个索引列的值相同时,其扩展的数据行才是正确的,我们可以通过这一特性来对数据进行过滤,获取最终的结果:

其实,列转行还有其它的写法,这里提供另一种更容易理解的思路:

  • 先通过子查询获取单科的成绩;

  • 然后再进行合并。

如下所示:

sql 复制代码
select
    student_id,
    "math" subject_name,
    math score
from
    student_scores_pivoted
union all
select
    student_id,
    "english" subject_name,
    english score
from
    student_scores_pivoted
union all
select
    student_id,
    "science" subject_name,
    science score
from
    student_scores_pivoted;

输出结果如下:

解决问题的方式有许多种,但往往我们需要去注重学习解决问题的思路,希望本文对你有所帮助。

相关推荐
成富41 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
songqq2742 分钟前
SQL题:使用hive查询各类型专利top 10申请人,以及对应的专利申请数
数据库·sql
拓端研究室TRL2 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁2 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式3 小时前
大数据治理:确保数据的可持续性和价值
大数据
zmd-zk4 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶4 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼4 小时前
Python 大数据展示屏实例
大数据·开发语言·python
时差9534 小时前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database