【数学建模】碎纸片的拼接复原

2013高教社杯全国大学生数学建模竞赛B题

问题一

已知 d i d_i di为第 i i i张图片图片的像素矩阵

已知 d i d_i di都是 n ∗ m n*m n∗m二维矩阵

假设有 N N N张图片

模型一

我们认为对应位置像素匹配为
d i [ j ] [ 1 ] = d k [ j ] [ m ] d_i[j][1]=d_k[j][m] di[j][1]=dk[j][m]

那么就有

图片之间匹配度数组
A [ i ] [ k ] = ∑ j = 1 m d i [ j ] [ 1 ] = d k [ j ] [ m ] A[i][k] = \displaystyle\sum_{j=1}^m d_i[j][1]=d_k[j][m] A[i][k]=j=1∑mdi[j][1]=dk[j][m]

其中 A [ i ] [ k ] A[i][k] A[i][k]表示第 i i i张图片放在第 k k k图片后面 的匹配度

建立模型:

目标是总匹配度最大

设立0/1变量 x i j = 1 x_{ij}=1 xij=1表示选择第 i i i张在第 j j j张后面,并且 A [ i ] [ j ] A[i][j] A[i][j]表示为 A i j A_{ij} Aij

已知起始图片为 a a a,终止图片为 b b b
{ max ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j ∑ j = 1 N x i j = 1 , i = a , i = j ∑ i = 1 N x i j = 1 , j = b , j = i i = 1 , . . . , N , j = 1 , . . . , N \begin{cases} \max \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij}\\ \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} a , i \cancel{=} j \\ \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} b , j \cancel{=} i \\ i = 1,...,N , j = 1,...,N \end{cases} ⎩ ⎨ ⎧maxi=1∑Nj=1∑NxijAijj=1∑Nxij=1,i= a,i= ji=1∑Nxij=1,j= b,j= ii=1,...,N,j=1,...,N

模型二

我们认为对应位置像素匹配不成功的差异为
∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ |d_i[j][1]-d_k[j][m]| ∣di[j][1]−dk[j][m]∣

那么就有

图片之间差异度数组
A [ i ] [ k ] = ∑ j = 1 m ∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ A[i][k] = \displaystyle\sum_{j=1}^m |d_i[j][1]-d_k[j][m]| A[i][k]=j=1∑m∣di[j][1]−dk[j][m]∣

其中 A [ i ] [ k ] A[i][k] A[i][k]表示第 k k k张图片放在第 i i i图片后面 的差异度

建立模型:

目标是总差异度最小

设立0/1变量 x i j = 1 x_{ij}=1 xij=1表示选择第 j j j张在第 i i i张后面,并且 A [ i ] [ j ] A[i][j] A[i][j]表示为 A i j A_{ij} Aij

已知起始图片为 a a a,终止图片为 b b b

得到目标 min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij} mini=1∑Nj=1∑NxijAij

要保证除开起始图片,每个图片都有前一张与其对应
∑ i = 1 N x i j = 1 , j = a \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} a i=1∑Nxij=1,j= a

同时除开终止图片也是,要有后一张与其对应
∑ j = 1 N x i j = 1 , i = b \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b j=1∑Nxij=1,i= b

条件设立思路

将其看作类似最短路问题

已知起点 a a a,终点为 b b b,图中每个节点都与其他节点有边,求从起点到终点的最短路问题,并且需要经过每一个节点!

目标依旧不变。
min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij} mini=1∑Nj=1∑NxijAij

要保证除开起始图片,每个图片都有前一张与其对应,实际上是除开起点,每个节点的入度都为1

\\displaystyle\\sum_{i=1}\^N x_{ij} = 1 , j \\cancel{=} a

同理除开终点每个节点出度为1
∑ j = 1 N x i j = 1 , i = b \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b j=1∑Nxij=1,i= b

避开自环存在
x i i = 0 , i = 1 , . . , N x_{ii} = 0 ,i=1,..,N xii=0,i=1,..,N

现在唯一的问题就是可能会出现,起点连几个点就到终点,其他点连成环。

目前解决办法,多次运行,如果出现上述情况,手动排除

假设 3 − > 4 − > 5 − > 6 − > 3 3->4->5->6->3 3−>4−>5−>6−>3成环了

那么 x 34 + x 45 + x 56 + x 63 = 4 x_{34}+x_{45}+x_{56}+x_{63}\cancel{=} 4 x34+x45+x56+x63= 4

所以模型如下:
A [ i ] [ k ] = ∑ j = 1 m ∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ A[i][k] = \displaystyle\sum_{j=1}^m |d_i[j][1]-d_k[j][m]| A[i][k]=j=1∑m∣di[j][1]−dk[j][m]∣
{ min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j ∑ i = 1 N x i j = 1 , j = a ∑ j = 1 N x i j = 1 , i = b i = 1 , . . . , N , j = 1 , . . . , N \begin{cases} \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij}\\ \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} a \\ \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b \\ i = 1,...,N , j = 1,...,N \end{cases} ⎩ ⎨ ⎧mini=1∑Nj=1∑NxijAiji=1∑Nxij=1,j= aj=1∑Nxij=1,i= bi=1,...,N,j=1,...,N

问题求解

数据处理:

MATLAB

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
a = cell(19,19);
for i = 1:19
    for j = 1:19
        sum = 0;
        for jj = 1:1980
            sum = sum + abs( double(d{i}(jj,72))-double(d{j}(jj,1)) );% j在i后面的差值
        end
        a{i,j} = sum; % 顺序是 i j
    end
end
xlswrite('D:\homewrok\建模\纸片\201391394826489\2013年全国大学生数学建模竞赛B题附件\附件1\a.xls', a);

lingo

lingo 复制代码
sets:
 aa/1..19/:;
 cc(aa,aa):x,d;
endsets
data:
 a = 9;
 b = 7;
 d = @ole('D:\homewrok\建模\纸片\201391394826489\2013年全国大学生数学建模竞赛B题附件\附件1\a.xls','A1:S19');
enddata
min = @sum(cc(i,j):x(i,j)*d(i,j));
@for(aa(i)|(i#ne#b):@sum(aa(j):x(i,j))=1);
@for(aa(j)|(j#ne#a):@sum(aa(i):x(i,j))=1);
@for(cc(i,j)|(i#eq#j):x(i,j)=0);
@for(cc(i,j):@bin(x(i,j)));

@for(aa(j):x(b,j)=0);
@for(aa(i):x(i,a)=0);

第一次

text 复制代码
                       X( 1, 7)        1.000000            25661.00
                       X( 2, 5)        1.000000            33616.00
                      X( 3, 17)        1.000000            14639.00
                      X( 4, 11)        1.000000            31383.00
                       X( 5, 6)        1.000000            22300.00
                      X( 6, 10)        1.000000            24650.00
                      X( 8, 18)        1.000000            33594.00
                      X( 9, 15)        1.000000            27544.00
                     X( 10, 14)        1.000000            26131.00
                      X( 11, 3)        1.000000            22137.00
                      X( 12, 8)        1.000000            21828.00
                     X( 13, 16)        1.000000            12228.00
                     X( 14, 19)        1.000000            21352.00
                     X( 15, 13)        1.000000            18222.00
                      X( 16, 4)        1.000000            24331.00
                      X( 17, 2)        1.000000            29574.00
                      X( 18, 1)        1.000000            26993.00
                     X( 19, 12)        1.000000            27268.00

发现没有出现上面担心的问题

MATLAB

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
ansd = [d{9},d{15},d{13},d{16},d{4},d{11},d{3},d{17},d{2},d{5},d{6},d{10},d{14},d{19},d{12},d{8},d{18},d{1},d{7}];
imshow(ansd);

同理做附件二:

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
ansd = [d{4},d{7},d{3},d{8},d{16},d{19},d{12},d{1},d{6},d{2},d{10},d{14},d{11},d{9},d{13},d{15},d{18},d{17},d{5}];
imshow(ansd);
相关推荐
小文数模6 小时前
2026年美赛数学建模C题完整参考论文(含模型和代码)
python·数学建模·matlab
DS数模8 小时前
2026年美赛MCM A题保姆级教程思路分析|A题:智能手机电池消耗建模
数学建模·智能手机·美国大学生数学建模竞赛·美国大学生数学建模·2026美赛·2026美赛a题
Deepoch14 小时前
Deepoc-M模型:以数学赋能,解锁通信产业“普惠创新”新可能
科技·5g·数学建模·通信·deepoc·deepoc数学大模型
小文数模15 小时前
2026美赛数学建模D题完整参考论文(含模型建立求解、代码等)
python·数学建模·matlab
一只小小的土拨鼠15 小时前
【26美赛B题】2026美赛数学建模(MCM/ICM)思路解析及代码分享
数学建模
数学建模导师18 小时前
2026美赛数学建模选题分析+ABCDEF题思路代码挖掘
数学建模
乾元18 小时前
自动化渗透:强化学习在内网渗透测试(DQN/PPO)中的实验
运维·网络·人工智能·深度学习·安全·数学建模
小文数模19 小时前
2026美赛数学建模F题完整参考论文(含模型建立求解、代码等)
python·数学建模·matlab
一只小小的土拨鼠19 小时前
2026年美国大学生数学建模竞赛全题型高质量成品资料,(MCM/ICM)完整论文+代码结果+思路解析(全套资源)保姆级教程(ABCDEF全套资源)
数学建模
小章UPUP19 小时前
2026ICM美赛F题O奖完整思路
数学建模