【数学建模】碎纸片的拼接复原

2013高教社杯全国大学生数学建模竞赛B题

问题一

已知 d i d_i di为第 i i i张图片图片的像素矩阵

已知 d i d_i di都是 n ∗ m n*m n∗m二维矩阵

假设有 N N N张图片

模型一

我们认为对应位置像素匹配为
d i [ j ] [ 1 ] = d k [ j ] [ m ] d_i[j][1]=d_k[j][m] di[j][1]=dk[j][m]

那么就有

图片之间匹配度数组
A [ i ] [ k ] = ∑ j = 1 m d i [ j ] [ 1 ] = d k [ j ] [ m ] A[i][k] = \displaystyle\sum_{j=1}^m d_i[j][1]=d_k[j][m] A[i][k]=j=1∑mdi[j][1]=dk[j][m]

其中 A [ i ] [ k ] A[i][k] A[i][k]表示第 i i i张图片放在第 k k k图片后面 的匹配度

建立模型:

目标是总匹配度最大

设立0/1变量 x i j = 1 x_{ij}=1 xij=1表示选择第 i i i张在第 j j j张后面,并且 A [ i ] [ j ] A[i][j] A[i][j]表示为 A i j A_{ij} Aij

已知起始图片为 a a a,终止图片为 b b b
{ max ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j ∑ j = 1 N x i j = 1 , i = a , i = j ∑ i = 1 N x i j = 1 , j = b , j = i i = 1 , . . . , N , j = 1 , . . . , N \begin{cases} \max \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij}\\ \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} a , i \cancel{=} j \\ \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} b , j \cancel{=} i \\ i = 1,...,N , j = 1,...,N \end{cases} ⎩ ⎨ ⎧maxi=1∑Nj=1∑NxijAijj=1∑Nxij=1,i= a,i= ji=1∑Nxij=1,j= b,j= ii=1,...,N,j=1,...,N

模型二

我们认为对应位置像素匹配不成功的差异为
∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ |d_i[j][1]-d_k[j][m]| ∣di[j][1]−dk[j][m]∣

那么就有

图片之间差异度数组
A [ i ] [ k ] = ∑ j = 1 m ∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ A[i][k] = \displaystyle\sum_{j=1}^m |d_i[j][1]-d_k[j][m]| A[i][k]=j=1∑m∣di[j][1]−dk[j][m]∣

其中 A [ i ] [ k ] A[i][k] A[i][k]表示第 k k k张图片放在第 i i i图片后面 的差异度

建立模型:

目标是总差异度最小

设立0/1变量 x i j = 1 x_{ij}=1 xij=1表示选择第 j j j张在第 i i i张后面,并且 A [ i ] [ j ] A[i][j] A[i][j]表示为 A i j A_{ij} Aij

已知起始图片为 a a a,终止图片为 b b b

得到目标 min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij} mini=1∑Nj=1∑NxijAij

要保证除开起始图片,每个图片都有前一张与其对应
∑ i = 1 N x i j = 1 , j = a \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} a i=1∑Nxij=1,j= a

同时除开终止图片也是,要有后一张与其对应
∑ j = 1 N x i j = 1 , i = b \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b j=1∑Nxij=1,i= b

条件设立思路

将其看作类似最短路问题

已知起点 a a a,终点为 b b b,图中每个节点都与其他节点有边,求从起点到终点的最短路问题,并且需要经过每一个节点!

目标依旧不变。
min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij} mini=1∑Nj=1∑NxijAij

要保证除开起始图片,每个图片都有前一张与其对应,实际上是除开起点,每个节点的入度都为1

\\displaystyle\\sum_{i=1}\^N x_{ij} = 1 , j \\cancel{=} a

同理除开终点每个节点出度为1
∑ j = 1 N x i j = 1 , i = b \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b j=1∑Nxij=1,i= b

避开自环存在
x i i = 0 , i = 1 , . . , N x_{ii} = 0 ,i=1,..,N xii=0,i=1,..,N

现在唯一的问题就是可能会出现,起点连几个点就到终点,其他点连成环。

目前解决办法,多次运行,如果出现上述情况,手动排除

假设 3 − > 4 − > 5 − > 6 − > 3 3->4->5->6->3 3−>4−>5−>6−>3成环了

那么 x 34 + x 45 + x 56 + x 63 = 4 x_{34}+x_{45}+x_{56}+x_{63}\cancel{=} 4 x34+x45+x56+x63= 4

所以模型如下:
A [ i ] [ k ] = ∑ j = 1 m ∣ d i [ j ] [ 1 ] − d k [ j ] [ m ] ∣ A[i][k] = \displaystyle\sum_{j=1}^m |d_i[j][1]-d_k[j][m]| A[i][k]=j=1∑m∣di[j][1]−dk[j][m]∣
{ min ⁡ ∑ i = 1 N ∑ j = 1 N x i j A i j ∑ i = 1 N x i j = 1 , j = a ∑ j = 1 N x i j = 1 , i = b i = 1 , . . . , N , j = 1 , . . . , N \begin{cases} \min \displaystyle\sum_{i=1}^N \displaystyle\sum_{j=1}^N x_{ij}A_{ij}\\ \displaystyle\sum_{i=1}^N x_{ij} = 1 , j \cancel{=} a \\ \displaystyle\sum_{j=1}^N x_{ij} = 1 , i \cancel{=} b \\ i = 1,...,N , j = 1,...,N \end{cases} ⎩ ⎨ ⎧mini=1∑Nj=1∑NxijAiji=1∑Nxij=1,j= aj=1∑Nxij=1,i= bi=1,...,N,j=1,...,N

问题求解

数据处理:

MATLAB

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
a = cell(19,19);
for i = 1:19
    for j = 1:19
        sum = 0;
        for jj = 1:1980
            sum = sum + abs( double(d{i}(jj,72))-double(d{j}(jj,1)) );% j在i后面的差值
        end
        a{i,j} = sum; % 顺序是 i j
    end
end
xlswrite('D:\homewrok\建模\纸片\201391394826489\2013年全国大学生数学建模竞赛B题附件\附件1\a.xls', a);

lingo

lingo 复制代码
sets:
 aa/1..19/:;
 cc(aa,aa):x,d;
endsets
data:
 a = 9;
 b = 7;
 d = @ole('D:\homewrok\建模\纸片\201391394826489\2013年全国大学生数学建模竞赛B题附件\附件1\a.xls','A1:S19');
enddata
min = @sum(cc(i,j):x(i,j)*d(i,j));
@for(aa(i)|(i#ne#b):@sum(aa(j):x(i,j))=1);
@for(aa(j)|(j#ne#a):@sum(aa(i):x(i,j))=1);
@for(cc(i,j)|(i#eq#j):x(i,j)=0);
@for(cc(i,j):@bin(x(i,j)));

@for(aa(j):x(b,j)=0);
@for(aa(i):x(i,a)=0);

第一次

text 复制代码
                       X( 1, 7)        1.000000            25661.00
                       X( 2, 5)        1.000000            33616.00
                      X( 3, 17)        1.000000            14639.00
                      X( 4, 11)        1.000000            31383.00
                       X( 5, 6)        1.000000            22300.00
                      X( 6, 10)        1.000000            24650.00
                      X( 8, 18)        1.000000            33594.00
                      X( 9, 15)        1.000000            27544.00
                     X( 10, 14)        1.000000            26131.00
                      X( 11, 3)        1.000000            22137.00
                      X( 12, 8)        1.000000            21828.00
                     X( 13, 16)        1.000000            12228.00
                     X( 14, 19)        1.000000            21352.00
                     X( 15, 13)        1.000000            18222.00
                      X( 16, 4)        1.000000            24331.00
                      X( 17, 2)        1.000000            29574.00
                      X( 18, 1)        1.000000            26993.00
                     X( 19, 12)        1.000000            27268.00

发现没有出现上面担心的问题

MATLAB

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
ansd = [d{9},d{15},d{13},d{16},d{4},d{11},d{3},d{17},d{2},d{5},d{6},d{10},d{14},d{19},d{12},d{8},d{18},d{1},d{7}];
imshow(ansd);

同理做附件二:

matlab 复制代码
d =cell(1,19);
for i = 1:19
    imageName=strcat(num2str(i-1,'%03d'),'.bmp');
    d{i}=imread(imageName);
end
ansd = [d{4},d{7},d{3},d{8},d{16},d{19},d{12},d{1},d{6},d{2},d{10},d{14},d{11},d{9},d{13},d{15},d{18},d{17},d{5}];
imshow(ansd);
相关推荐
贝塔实验室18 小时前
QPSK信号载波同步技术---四相Costas 环法
数学建模·fpga开发·硬件工程·动态规划·信息与通信·信号处理·傅立叶分析
88号技师18 小时前
【2025年10月一区SCI】改进策略:Trend-Aware Mechanism 趋势感知机制(TAM)-附Matlab免费代码
开发语言·算法·数学建模·matlab·优化算法
fengfuyao9852 天前
基于MATLAB的匈牙利算法实现任务分配
算法·数学建模·matlab
MoRanzhi12032 天前
SciPy傅里叶变换与信号处理教程:数学原理与Python实现
python·机器学习·数学建模·数据分析·信号处理·傅里叶分析·scipy
哈泽尔都2 天前
运动控制教学——5分钟学会PRM算法!
人工智能·单片机·算法·数学建模·贪心算法·机器人·无人机
UpYoung!3 天前
【Typora——MD编辑器】Typora最新 V1.12.1版:轻量级 Markdown 编辑器详细图文下载安装使用教程
学习·数学建模·编辑器·运维开发·个人开发
2501_933360723 天前
覆盖动画 / 工业 / 科研!Rhino 7:专业 3D 建模的全能解决方案,新手也能上手
数学建模·3d
Cathy Bryant4 天前
球极平面投影
经验分享·笔记·数学建模
杨小码不BUG6 天前
灯海寻踪:开灯问题的C++精妙解法(洛谷P1161)
c++·算法·数学建模·位运算·浮点数·信奥赛·csp-j/s
杨小码不BUG6 天前
Davor的北极探险资金筹集:数学建模与算法优化(洛谷P4956)
c++·算法·数学建模·信奥赛·csp-j/s