图论中的两种递推计数法

递推计数法

生成树计数:

τ ( G ) = τ ( G − e ) + τ ( G ⋅ e ) \tau(G) = \tau(G-e)+\tau(G\cdot e) τ(G)=τ(G−e)+τ(G⋅e)

G的生成树的颗数,可以分为两类:包含边e的为 τ ( G ⋅ e ) \tau(G\cdot e) τ(G⋅e),不包含边e的为 τ ( G − e ) \tau(G - e) τ(G−e)

生成树的计数还可以通过计算Laplace矩阵任意元素的代数余子式求得。

色多项式计数:

P k ( G ) = P k ( G − e ) − P k ( G ⋅ e ) P_k(G) = P_k(G-e)-P_k(G\cdot e) Pk(G)=Pk(G−e)−Pk(G⋅e)

G-e的k着色方案可以分为两类:e的两个端点着不同色的为 P k ( G ) P_k(G) Pk(G), e的两个端点着相同色的为 P k ( G ⋅ e ) P_k(G \cdot e) Pk(G⋅e)

相关推荐
图灵科竞社资讯组17 小时前
图论基础:图存+记忆化搜索
算法·图论
啊阿狸不会拉杆1 天前
数据结构-图
java·c语言·数据结构·c++·python·算法·图论
rgb2gray1 天前
描述城市出行需求模式的复杂网络视角:大规模起点-目的地需求网络的图论分析
网络·图论
ん贤1 天前
图论算法体系:并查集、生成树、排序与路径搜索全解析
图论
_安晓2 天前
数据结构 -- 图的应用(一)
数据结构·算法·图论
奶油泡芙shi_caicai2 天前
算法题-图论
算法·图论
_extraordinary_3 天前
数据结构图论基础知识(一)
数据结构·图论
How_doyou_do4 天前
P5839-图论-Floyd算法
数据结构·算法·图论
callJJ4 天前
Floyd算法求解最短路径问题——从零开始的图论讲解(3)
java·算法·动态规划·图论·dijkstra算法·floyd算法·最短路径问题
君义_noip4 天前
信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
c++·算法·图论·信息学奥赛