44、Flink 的 Interval Join 详解

Interval Join

Interval join 组合元素的条件为 :两个流(暂时称为 A 和 B)中 key 相同且 B 中元素的 timestamp 处于 A 中元素 timestamp 的一定范围内,即 b.timestamp ∈ [a.timestamp + lowerBound; a.timestamp + upperBound]a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

这里的 a 和 b 为 A 和 B 中共享相同 key 的元素,上界和下界可正可负,只要下界永远小于等于上界即可,Interval join 目前仅执行 inner join

当一对元素被传递给 ProcessJoinFunction,他们的 timestamp 会从两个元素的 timestamp 中取最大值 (timestamp 可以通过 ProcessJoinFunction.Context 访问)。

Interval join 目前仅支持 event time。

上例中,join 了橙色和绿色两个流,join 的条件是:以 -2 毫秒为下界、+1 毫秒为上界。

默认情况下,上下界也被包括在区间内,但 .lowerBoundExclusive().upperBoundExclusive() 可以将它们排除在外。

图中三角形所表示的条件也可以写成更加正式的表达式:

复制代码
orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

代码示例

复制代码
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;

...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream
    .keyBy(<KeySelector>)
    .intervalJoin(greenStream.keyBy(<KeySelector>))
    .between(Time.milliseconds(-2), Time.milliseconds(1))
    .process (new ProcessJoinFunction<Integer, Integer, String>(){

        @Override
        public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
            out.collect(left + "," + right);
        }
    });
相关推荐
永洪科技1 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_307779132 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控4 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY5 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj6 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商6 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
Edingbrugh.南空6 小时前
Flink SQLServer CDC 环境配置与验证
数据库·sqlserver·flink
Aurora_NeAr7 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1237 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师7 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链