44、Flink 的 Interval Join 详解

Interval Join

Interval join 组合元素的条件为 :两个流(暂时称为 A 和 B)中 key 相同且 B 中元素的 timestamp 处于 A 中元素 timestamp 的一定范围内,即 b.timestamp ∈ [a.timestamp + lowerBound; a.timestamp + upperBound]a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

这里的 a 和 b 为 A 和 B 中共享相同 key 的元素,上界和下界可正可负,只要下界永远小于等于上界即可,Interval join 目前仅执行 inner join

当一对元素被传递给 ProcessJoinFunction,他们的 timestamp 会从两个元素的 timestamp 中取最大值 (timestamp 可以通过 ProcessJoinFunction.Context 访问)。

Interval join 目前仅支持 event time。

上例中,join 了橙色和绿色两个流,join 的条件是:以 -2 毫秒为下界、+1 毫秒为上界。

默认情况下,上下界也被包括在区间内,但 .lowerBoundExclusive().upperBoundExclusive() 可以将它们排除在外。

图中三角形所表示的条件也可以写成更加正式的表达式:

orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

代码示例

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;

...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream
    .keyBy(<KeySelector>)
    .intervalJoin(greenStream.keyBy(<KeySelector>))
    .between(Time.milliseconds(-2), Time.milliseconds(1))
    .process (new ProcessJoinFunction<Integer, Integer, String>(){

        @Override
        public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
            out.collect(left + "," + right);
        }
    });
相关推荐
EasyCVR1 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm1 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
科技象限2 小时前
电脑禁用U盘的四种简单方法(电脑怎么阻止u盘使用)
大数据·网络·电脑
天冬忘忧3 小时前
Kafka 生产者全面解析:从基础原理到高级实践
大数据·分布式·kafka
青云交3 小时前
大数据新视界 -- Hive 数据仓库:构建高效数据存储的基石(下)(2/ 30)
大数据·数据仓库·hive·数据安全·数据分区·数据桶·大数据存储
zmd-zk3 小时前
flink学习(2)——wordcount案例
大数据·开发语言·学习·flink
电子手信3 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
隔着天花板看星星4 小时前
Kafka-Consumer理论知识
大数据·分布式·中间件·kafka
holywangle4 小时前
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
大数据·flink·kafka
隔着天花板看星星4 小时前
Kafka-副本分配策略
大数据·分布式·中间件·kafka