44、Flink 的 Interval Join 详解

Interval Join

Interval join 组合元素的条件为 :两个流(暂时称为 A 和 B)中 key 相同且 B 中元素的 timestamp 处于 A 中元素 timestamp 的一定范围内,即 b.timestamp ∈ [a.timestamp + lowerBound; a.timestamp + upperBound]a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

这里的 a 和 b 为 A 和 B 中共享相同 key 的元素,上界和下界可正可负,只要下界永远小于等于上界即可,Interval join 目前仅执行 inner join

当一对元素被传递给 ProcessJoinFunction,他们的 timestamp 会从两个元素的 timestamp 中取最大值 (timestamp 可以通过 ProcessJoinFunction.Context 访问)。

Interval join 目前仅支持 event time。

上例中,join 了橙色和绿色两个流,join 的条件是:以 -2 毫秒为下界、+1 毫秒为上界。

默认情况下,上下界也被包括在区间内,但 .lowerBoundExclusive().upperBoundExclusive() 可以将它们排除在外。

图中三角形所表示的条件也可以写成更加正式的表达式:

复制代码
orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

代码示例

复制代码
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;

...

DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;

orangeStream
    .keyBy(<KeySelector>)
    .intervalJoin(greenStream.keyBy(<KeySelector>))
    .between(Time.milliseconds(-2), Time.milliseconds(1))
    .process (new ProcessJoinFunction<Integer, Integer, String>(){

        @Override
        public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
            out.collect(left + "," + right);
        }
    });
相关推荐
问道飞鱼34 分钟前
【大数据知识】今天聊聊Clickhouse部署方案
大数据·clickhouse·部署
金融小师妹4 小时前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
武子康4 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
睎zyl8 小时前
Spark自定义分区器-基础
大数据·分布式·spark
巨龙之路8 小时前
【TDengine源码阅读】DLL_EXPORT
大数据·时序数据库·tdengine
元6339 小时前
搭建spark-local模式
大数据·spark
巨龙之路9 小时前
TDengine编译成功后的bin目录下的文件的作用
大数据·时序数据库·tdengine
莫叫石榴姐9 小时前
大模型在数据分析领域的研究综述
大数据·数据挖掘·数据分析
百锦再10 小时前
大数据技术的主要方向及其应用详解
大数据·linux·网络·python·django·pygame
巨龙之路11 小时前
【TDengine源码阅读】#if defined(__APPLE__)
大数据·时序数据库·tdengine