STM32简易音乐播放器(HAL库)

一、设计描述

本设计以STM32MP157A单片机为核心控制器,加上其他的模块一起组成基于单片机的音乐盒的整个系统,通过不同频率的PWM使蜂鸣器播放音乐,通过按键中断实现歌曲切换,音量调节,定时器中断实现播放速度调节,LED灯也会随着音乐而闪烁。

**硬件:**STM32MP157A

**软件:**STM32CUBEIDE

音乐盒的功能:

1、能稳定的播放出音乐,满足使用者对音乐盒的需求。

2、具有开始和暂停的功能,按下暂停键音乐会停止播放,再按下开始,音乐会接着播放。

3、可以通过按下切换键播放下一首歌曲。

4、可以通过按下变速键,实现歌曲由1倍数-1.2倍数-1.5倍数-2倍数-0.8倍数-0.6倍数-1倍数的切换。

5、可以通过按下音量键使音量逐渐变大,到达阈值之后音量变为0实现静音,再按又会逐渐增大。

6、led会随着歌曲的音调而变化。

二、基本配置信息

通常情况可以采用HAL_Delay()来实现一个音的持续时间,我们将其换成定时器,便于控制。再就是PWM控制蜂鸣器,我们需要设置对应的高中低音。

**定时器:**使用TIM2配置出一个0.1s的中断,我们将一个半拍按0.5秒算,这样我们只需要改变 对tim2中断的计数来改变播放速度。

PWM蜂鸣器: 我们先了解一个公式 || ( (PSC+1)/CLK ) * ( ARR+1 ) = 1 / f|| f(频率)

clk:系统时钟(64MHZ)(STM32MP157A)我们在程序中会更改ARR来改变频率,所以我们需要事先确定一个合适的**PSC。 频率:**一秒执行多少次。

我们取 1/f 中 取中音1频率 1/523.3 = 0.00191094974202178482705904834703

很长一串小数,可能还没算完,那我们可以取小数点后五位数据。我们以 0.00001为基础也就是让

(PSC+1)/CLK ) = 0.00001 已知clk = 64*10^6 得出PSC + 1 = 640

那么ARR是用于干什么的呢。1/523.3 就约等于 0.00001 ***( ARR+1 )**那么 ARR+1就等于191。

总结一下:我们通过计算得出一个基数,PSC配置为 640 - 1 ,明显ARR在最初时没有实际效果,因为音频不同相应的ARR也不同(这里简易 ARR = 999,不建议设置太大)

音乐盒 架构图

三、STM32CUBEIDE配置

1、定时器--100ms

2、PWM配置(蜂鸣器 -- PB6)

3、按键极LED

4、NVIC

四、程序编写

1. 基础变量

因为有许多中断,所以将在stm32mp1xx_it.c 和 main.c 之间交换信息。

stm32mp1xx_it.c 基础变量

int time_100ms_cnt = 0; //0.1s计数器
int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0;	//实际执行的节拍数

int Beat_num = 2;		//这个一个音需要多少个 半拍
int flag = 0; 			//当其等于 1 时,表示一个音结束
int EN = 0;				//使能信号,用于开启整个音乐盒
int list = 0;			//音乐列表
int list_max = 0;		//音乐总数
int Low_volume = 5;		//音量大小
#define Low_volume_cnt  3	//音量大小增加数

main.c基础变量

extern int time_100ms_cnt = 0; //0.1s计数器
extern int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n = 0;	//实际执行的节拍数

extern int Beat_num = 2;		//这个一个音需要多少个 半拍
extern int flag = 0; 			//当其等于 1 时,表示一个音结束
extern int EN = 0;				//使能信号,用于开启整个音乐盒
extern int list = 0;			//音乐列表
extern int list_max = 0;		//音乐总数
extern int Low_volume = 5;		//音量大小

2. LED随音乐跳动

//将LED设置成全灭
void LED_RESET(){
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
}

void LED(int i){
	if(i >= 1)  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
	if(i >= 2)  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
	if(i >= 3)  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11,GPIO_PIN_SET);
	if(i >= 4)  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
}
//随音节输入,改变LED状�??
void LED_BEEP(int i){
	LED_RESET();
	switch(i){
	case 1:{
		LED(1);
		break;
	}
	case 2:{
		LED(1);
		break;
	}

	case 3:{
		LED(2);
		break;
	}
	case 4:{
		LED(2);
		break;
	}

	case 5:{
		LED(3);
		break;
	}
	case 6:{
		LED(3);
		break;
	}

	case 7:{
		LED(4);
		break;
	}
	default:{
		LED_RESET();
		  break;
	}
	}
}

3. 配置低中高音

int tone[3][8];
//初始化高中低音频率
void tone_init(){
	tone[1][0] = 0;	//不执行音乐
	tone[1][1] = 191;
	tone[1][2] = 170;
	tone[1][3] = 151;
	tone[1][4] = 143;
	tone[1][5] = 127;
	tone[1][6] = 113;
	tone[1][7] = 101;
    // 低音 (Low)
    for (int i = 0; i < 8; i++) {
        tone[0][i] = tone[1][i] * 2; // 只是低音 近似的值
    }

    // 高音 (High)
    for (int i = 0; i < 8; i++) {
        tone[2][i] = tone[1][i] / 2; // 只是高音  近似的值
    }
}

4.乐谱结构体

#define MAX_unit_num 200 //�??大乐谱数�??
//创建结构体保存乐�??
struct music_unit{
	char name[50];		//乐谱名称
	int unit[MAX_unit_num];		//发什么音
	int unit_HL[MAX_unit_num];	//发高音或者其�??
	int time[MAX_unit_num];		//发音时间
	//int time_4[MAX_unit_num];	//判断是否�??1/4�??
	int num;			//记录有多少个
}music[25];

5. 编写乐谱

//创建乐谱 返回有多少首音乐
int music_init(){
	int cnt = 0;
	//第一首音�?? 生日快乐
	strcpy(music[0].name, "生日快乐"); 				// 使用strcpy复制字符�?? 给音乐命�??
	int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
								5,5,6,3,1,7, 6,4,4,3,1,2,1,
								0,0};		//基础乐谱
	int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
								2,2,2,2,2,2, 2,2,2,2,2,2,3,
								1,1};		//乐谱节拍
	music[0].num = 29;										//乐谱总数
	int music0_unit_HL[29] = {1,1,
								0,0,0,0,1,0, 0,0,0,0,1,1,
								0,0,1,1,1,0, 0,1,1,1,1,1,1,
								1,1}; 	//乐谱全为中音

	//第二首音�?? �??闪一闪亮晶晶
	cnt++;
	strcpy(music[1].name, "�??闪一闪亮晶晶"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music1_unit[44] = {0,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   0};		//基础乐谱
	int music1_time[44] = {2,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2};		//乐谱节拍
	int music1_unit_HL[44] =
						  {1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1}; 		//乐谱全为中音
	music[1].num = 44;											//乐谱总数



	//第三首音�?? 两只老虎
	cnt++;
	strcpy(music[2].name, "两只老虎"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music2_unit[38] = {0,
						   1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
						   5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
						   1,5,1,1, 0};		//基础乐谱
	int music2_time[38] = {2,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
						   1,1,1,2, 2};		//乐谱节拍
	int music2_unit_HL[38] =
						  {1,
					       1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
						   1,0,1,1, 1}; 		//乐谱�??   中音
	music[2].num = 38;											//乐谱总数


	//第四首音�?? 青花瓷片�??
	cnt++;
	strcpy(music[3].name, "青花瓷片选"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
						    2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
						    2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
						    2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
						    3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0};		//基础乐谱

	int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
							0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
							2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
							0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
							0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1};		//乐谱节拍

	for(int i =0;i<100;i++)
		music3_time[i] = music3_time[i]+1;

	int music3_unit_HL[100] =
						  { 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
							1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
							1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; 		//乐谱�??   中音
	music[3].num = 100;											//乐谱总数




	for (int i = 0; i < MAX_unit_num; i++) {
		//将乐谱保存进结构�??
		if(i<music[0].num){//确保数据正确
			music[0].unit[i] =music0_unit[i];
			music[0].unit_HL[i] =music0_unit_HL[i];
			music[0].time[i] =music0_time[i];
		}


		//将乐谱保存进结构�??
		if(i<music[1].num){//确保数据正确
			music[1].unit[i] =music1_unit[i];
			music[1].unit_HL[i] =music1_unit_HL[i];
			music[1].time[i] =music1_time[i];
		}

		//将乐谱保存进结构�??
		if(i<music[2].num){//确保数据正确
			music[2].unit[i] =music2_unit[i];
			music[2].unit_HL[i] =music2_unit_HL[i];
			music[2].time[i] =music2_time[i];
		}


		//将乐谱保存进结构�??
		if(i<music[3].num){//确保数据正确
			music[3].unit[i] =music3_unit[i];
			music[3].unit_HL[i] =music3_unit_HL[i];
			music[3].time[i] =music3_time[i];
		}
	}


	return cnt;
}

6. 音乐实现函数

//播放音乐 N首音乐 音量 X 0 - 10
void play_music(int n, int x){
	static int ni = 0; 		//用于判断 是否换了音乐
	static int cnt = 0;		//记录播放到哪一个 音节
	if(ni != n ){//如果音乐换了
		ni = n;
		cnt = 0;
		__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
		HAL_Delay(1000);//
	}

	//
	int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]];	//获取频率
	if(flag == 1){	//接受到一个音节结束
		flag = 0;	//复位
		Beat_num = music[n].time[cnt]; 				//这个音需要多少个半拍
		LED_BEEP(music[n].unit[cnt]);				//LED随音节变动

		if(music[n].time[cnt] == 0){// 后面添加的 1/4 拍
			Beat_speed_n = Beat_speed /2;
		}
		else{//如果没有1/4拍
			Beat_speed_n = Beat_speed;
		}

		__HAL_TIM_SET_AUTORELOAD(&htim4,value);		//自动加载频率

		cnt ++; 	//可进行下一次音节
		if(cnt >= music[n].num){ //如果一首音乐播放完毕
			cnt = 0;//重新播放
			//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
			//HAL_Delay(500);//
		}
	}
	//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
	__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}

7. 全部中断

void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0)//确保数据稳定
	{
		//每次按下解决 音量�?? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0)//确保数据稳定
	{
		//控制音乐播放的�?�度
		static int i = 0;
		i++;
		//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
		switch(i){
		case 0:{
			Beat_speed = 5;	//0.5s半个节拍,正常+�?�度
			break;
		}
		case 1:{
			Beat_speed = 4;	//1.2倍数
			break;
		}
		case 2:{
			Beat_speed = 3;	//约等�?? 1.5倍数
			break;
		}
		case 3:{
			Beat_speed = 1;	//约等�?? 2 倍数
			break;
		}
		case 4:{
			Beat_speed = 6;	//约等�?? 0.8 倍数
			break;
		}
		case 5:{
			Beat_speed = 7;	//约等�?? 0.6 倍数
			break;
		}

		default:{
			Beat_speed = 5;	//0.5s半个节拍,正常�?�度
			i=0;
			break;
		}
		}
	}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	//按下�??次音乐进入下�??�??
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0)//确保数据稳定
	{
		list++;
		if(list > list_max){
			list = 0;
		}
	}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

/**
  * @brief This function handles TIM2 global interrupt.
  */
void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�??
	}
  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
  * @brief This function handles EXTI line9 interrupt.
  */
void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOF, GPIO_PIN_9) == 0)//确保数据稳定
		EN = !EN;
  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

五、总代码

main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

#include <string.h> // 引入strcpy函数�?�?的头文件
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

//将LED设置成全�??
void LED_RESET(){
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
}

void LED(int i){
	if(i >= 1)  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
	if(i >= 2)  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
	if(i >= 3)  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11,GPIO_PIN_SET);
	if(i >= 4)  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
}
//随音节输入,改变LED状�??
void LED_BEEP(int i){
	LED_RESET();
	switch(i){
	case 1:{
		LED(1);
		break;
	}
	case 2:{
		LED(1);
		break;
	}

	case 3:{
		LED(2);
		break;
	}
	case 4:{
		LED(2);
		break;
	}

	case 5:{
		LED(3);
		break;
	}
	case 6:{
		LED(3);
		break;
	}

	case 7:{
		LED(4);
		break;
	}
	default:{
		LED_RESET();
		  break;
	}
	}
}


extern int time_100ms_cnt; 	//0.1s计数�??
extern int Beat_speed;		//节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n;	//实际执行的节�??

extern int Beat_num;		//这个�?? �??要多少个 半拍
extern int flag; 			//当其等于 1 时,表示�??个音结束
extern int EN;				//使能信号,用于开启整个音�??
extern int list ;			//音乐列表
extern int list_max ;		//音乐总数
extern int Low_volume;		//音量大小

int tone[3][8];
//初始化高中低�??
void tone_init(){
	tone[1][0] = 0;	//不执�??
	tone[1][1] = 191;
	tone[1][2] = 170;
	tone[1][3] = 151;
	tone[1][4] = 143;
	tone[1][5] = 127;
	tone[1][6] = 113;
	tone[1][7] = 101;
    // 低音 (Low)
    for (int i = 0; i < 8; i++) {
        tone[0][i] = tone[1][i] * 2; // 只是�??个近似的值,实际值可能不�??
    }

    // 高音 (High)
    for (int i = 0; i < 8; i++) {
        tone[2][i] = tone[1][i] / 2; // 只是�??个近似的值,实际值可能不�??
    }
}


#define MAX_unit_num 200 //�??大乐谱数�??
//创建结构体保存乐�??
struct music_unit{
	char name[50];		//乐谱名称
	int unit[MAX_unit_num];		//发什么音
	int unit_HL[MAX_unit_num];	//发高音或者其�??
	int time[MAX_unit_num];		//发音时间
	//int time_4[MAX_unit_num];	//判断是否�??1/4�??
	int num;			//记录有多少个
}music[25];

//创建乐谱 返回有多少首音乐
int music_init(){
	int cnt = 0;
	//第一首音�?? 生日快乐
	strcpy(music[0].name, "生日快乐"); 				// 使用strcpy复制字符�?? 给音乐命�??
	int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
								5,5,6,3,1,7, 6,4,4,3,1,2,1,
								0,0};		//基础乐谱
	int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
								2,2,2,2,2,2, 2,2,2,2,2,2,3,
								1,1};		//乐谱节拍
	music[0].num = 29;										//乐谱总数
	int music0_unit_HL[29] = {1,1,
								0,0,0,0,1,0, 0,0,0,0,1,1,
								0,0,1,1,1,0, 0,1,1,1,1,1,1,
								1,1}; 	//乐谱全为中音

	//第二首音�?? �??闪一闪亮晶晶
	cnt++;
	strcpy(music[1].name, "�??闪一闪亮晶晶"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music1_unit[44] = {0,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   0};		//基础乐谱
	int music1_time[44] = {2,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2};		//乐谱节拍
	int music1_unit_HL[44] =
						  {1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1}; 		//乐谱全为中音
	music[1].num = 44;											//乐谱总数



	//第三首音�?? 两只老虎
	cnt++;
	strcpy(music[2].name, "两只老虎"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music2_unit[38] = {0,
						   1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
						   5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
						   1,5,1,1, 0};		//基础乐谱
	int music2_time[38] = {2,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
						   1,1,1,2, 2};		//乐谱节拍
	int music2_unit_HL[38] =
						  {1,
					       1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
						   1,0,1,1, 1}; 		//乐谱�??   中音
	music[2].num = 38;											//乐谱总数


	//第四首音�?? 青花瓷片�??
	cnt++;
	strcpy(music[3].name, "青花瓷片选"); 					// 使用strcpy复制字符�?? 给音乐命�??
	int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
						    2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
						    2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
						    2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
						    3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0};		//基础乐谱

	int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
							0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
							2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
							0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
							0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1};		//乐谱节拍

	for(int i =0;i<100;i++)
		music3_time[i] = music3_time[i]+1;

	int music3_unit_HL[100] =
						  { 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
							1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
							1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; 		//乐谱�??   中音
	music[3].num = 100;											//乐谱总数




	for (int i = 0; i < MAX_unit_num; i++) {
		//将乐谱保存进结构�??
		if(i<music[0].num){//确保数据正确
			music[0].unit[i] =music0_unit[i];
			music[0].unit_HL[i] =music0_unit_HL[i];
			music[0].time[i] =music0_time[i];
		}


		//将乐谱保存进结构�??
		if(i<music[1].num){//确保数据正确
			music[1].unit[i] =music1_unit[i];
			music[1].unit_HL[i] =music1_unit_HL[i];
			music[1].time[i] =music1_time[i];
		}

		//将乐谱保存进结构�??
		if(i<music[2].num){//确保数据正确
			music[2].unit[i] =music2_unit[i];
			music[2].unit_HL[i] =music2_unit_HL[i];
			music[2].time[i] =music2_time[i];
		}


		//将乐谱保存进结构�??
		if(i<music[3].num){//确保数据正确
			music[3].unit[i] =music3_unit[i];
			music[3].unit_HL[i] =music3_unit_HL[i];
			music[3].time[i] =music3_time[i];
		}
	}


	return cnt;
}





//播放�?? N首音�?? 音量�?? X 0 - 100
void play_music(int n, int x){
	static int ni = 0; 		//用于判断 是否换了音乐
	static int cnt = 0;		//记录播放到哪�??�?? 音节
	if(ni != n ){//如果音乐换了
		ni = n;
		cnt = 0;
		__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
		HAL_Delay(1000);//
	}

	//
	int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]];	//获取频率
	if(flag == 1){	//接受到一个音节结�??
		flag = 0;	//复位
		Beat_num = music[n].time[cnt]; 				//这个音需要多少个半拍
		LED_BEEP(music[n].unit[cnt]);				//LED随音节变动�?�变�??

		if(music[n].time[cnt] == 0){//如果�?? 1/4�??
			Beat_speed_n = Beat_speed /2;
		}
		else{//如果没有1/4�??
			Beat_speed_n = Beat_speed;
		}

		//if(value != 0)//如果有频率�?�执行,没有者只更新 时间�??
		__HAL_TIM_SET_AUTORELOAD(&htim4,value);		//自动加载频率�??

		cnt ++; 	//可进行下�??次音�??
		if(cnt >= music[n].num){ //如果�??个音节播放完�??
			cnt = 0;//重新播放
			//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
			//HAL_Delay(500);//
		}
	}
	//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
	__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}


/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  if(IS_ENGINEERING_BOOT_MODE())
  {
    /* Configure the system clock */
    SystemClock_Config();
  }

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM4_Init();
  MX_TIM2_Init();
  /* USER CODE BEGIN 2 */
  tone_init(); //初始化音量频�??
  list_max = music_init();//更新乐谱
  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//�??启PWM
  HAL_TIM_Base_Start_IT(&htim2);		  	//�??启定时器�??
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

	  if(EN == 1)//�??启音�??
		  play_music(list,Low_volume);
	  else
		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量


	  //EN = 1;
	  //play_music(0,5);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** RCC Clock Config
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
                              |RCC_CLOCKTYPE_PCLK5;
  RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
  RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
  RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
  RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
  RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
  RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
  RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
  RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 6400-1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 1000-1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief TIM4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM4_Init(void)
{

  /* USER CODE BEGIN TIM4_Init 0 */

  /* USER CODE END TIM4_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM4_Init 1 */

  /* USER CODE END TIM4_Init 1 */
  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 640-1;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 100-1;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM4_Init 2 */

  /* USER CODE END TIM4_Init 2 */
  HAL_TIM_MspPostInit(&htim4);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOI_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1|GPIO_PIN_6, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);

  /*Configure GPIO pins : PF1 PF6 */
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_6;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

  /*Configure GPIO pin : PC7 */
  GPIO_InitStruct.Pin = GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : PI11 PI10 */
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);

  /*Configure GPIO pins : PG2 PG0 PG1 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

  /*Configure GPIO pin : PE9 */
  GPIO_InitStruct.Pin = GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI0_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI0_IRQn);

  HAL_NVIC_SetPriority(EXTI1_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI1_IRQn);

  HAL_NVIC_SetPriority(EXTI2_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI2_IRQn);

  HAL_NVIC_SetPriority(EXTI9_IRQn, 1, 0);
  HAL_NVIC_EnableIRQ(EXTI9_IRQn);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

stm32mp1xx_it.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    stm32mp1xx_it.c
  * @brief   Interrupt Service Routines.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32mp1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */

/* USER CODE END TD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int time_100ms_cnt = 0; //0.1s计数�??
int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0;	//实际执行的节�??

int Beat_num = 2;		//这个�?? �??要多少就 半拍
int flag = 0; 			//当其等于 1 时,表示�??个音结束
int EN = 0;				//使能信号,用于开启整个音�??
int list = 0;			//音乐列表
int list_max = 0;		//音乐总数
int Low_volume = 5;		//音量大小
#define Low_volume_cnt  3	//音量大小�??10增加

/* USER CODE END 0 */

/* External variables --------------------------------------------------------*/
extern TIM_HandleTypeDef htim2;
/* USER CODE BEGIN EV */

/* USER CODE END EV */

/******************************************************************************/
/*           Cortex-M4 Processor Interruption and Exception Handlers          */
/******************************************************************************/
/**
  * @brief This function handles Non maskable interrupt.
  */
void NMI_Handler(void)
{
  /* USER CODE BEGIN NonMaskableInt_IRQn 0 */

  /* USER CODE END NonMaskableInt_IRQn 0 */
  /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
  while (1)
  {
  }
  /* USER CODE END NonMaskableInt_IRQn 1 */
}

/**
  * @brief This function handles Hard fault interrupt.
  */
void HardFault_Handler(void)
{
  /* USER CODE BEGIN HardFault_IRQn 0 */

  /* USER CODE END HardFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_HardFault_IRQn 0 */
    /* USER CODE END W1_HardFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Memory management fault.
  */
void MemManage_Handler(void)
{
  /* USER CODE BEGIN MemoryManagement_IRQn 0 */

  /* USER CODE END MemoryManagement_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
    /* USER CODE END W1_MemoryManagement_IRQn 0 */
  }
}

/**
  * @brief This function handles Pre-fetch fault, memory access fault.
  */
void BusFault_Handler(void)
{
  /* USER CODE BEGIN BusFault_IRQn 0 */

  /* USER CODE END BusFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_BusFault_IRQn 0 */
    /* USER CODE END W1_BusFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Undefined instruction or illegal state.
  */
void UsageFault_Handler(void)
{
  /* USER CODE BEGIN UsageFault_IRQn 0 */

  /* USER CODE END UsageFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
    /* USER CODE END W1_UsageFault_IRQn 0 */
  }
}

/**
  * @brief This function handles System service call via SWI instruction.
  */
void SVC_Handler(void)
{
  /* USER CODE BEGIN SVCall_IRQn 0 */

  /* USER CODE END SVCall_IRQn 0 */
  /* USER CODE BEGIN SVCall_IRQn 1 */

  /* USER CODE END SVCall_IRQn 1 */
}

/**
  * @brief This function handles Debug monitor.
  */
void DebugMon_Handler(void)
{
  /* USER CODE BEGIN DebugMonitor_IRQn 0 */

  /* USER CODE END DebugMonitor_IRQn 0 */
  /* USER CODE BEGIN DebugMonitor_IRQn 1 */

  /* USER CODE END DebugMonitor_IRQn 1 */
}

/**
  * @brief This function handles Pendable request for system service.
  */
void PendSV_Handler(void)
{
  /* USER CODE BEGIN PendSV_IRQn 0 */

  /* USER CODE END PendSV_IRQn 0 */
  /* USER CODE BEGIN PendSV_IRQn 1 */

  /* USER CODE END PendSV_IRQn 1 */
}

/**
  * @brief This function handles System tick timer.
  */
void SysTick_Handler(void)
{
  /* USER CODE BEGIN SysTick_IRQn 0 */

  /* USER CODE END SysTick_IRQn 0 */
  HAL_IncTick();
  /* USER CODE BEGIN SysTick_IRQn 1 */

  /* USER CODE END SysTick_IRQn 1 */
}

/******************************************************************************/
/* STM32MP1xx Peripheral Interrupt Handlers                                    */
/* Add here the Interrupt Handlers for the used peripherals.                  */
/* For the available peripheral interrupt handler names,                      */
/* please refer to the startup file (startup_stm32mp1xx.s).                    */
/******************************************************************************/

/**
  * @brief This function handles EXTI line0 interrupt.
  */
void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0)//确保数据稳定
	{
		//每次按下解决 音量�?? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0)//确保数据稳定
	{
		//控制音乐播放的�?�度
		static int i = 0;
		i++;
		//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
		switch(i){
		case 0:{
			Beat_speed = 5;	//0.5s半个节拍,正常+�?�度
			break;
		}
		case 1:{
			Beat_speed = 4;	//1.2倍数
			break;
		}
		case 2:{
			Beat_speed = 3;	//约等�?? 1.5倍数
			break;
		}
		case 3:{
			Beat_speed = 1;	//约等�?? 2 倍数
			break;
		}
		case 4:{
			Beat_speed = 6;	//约等�?? 0.8 倍数
			break;
		}
		case 5:{
			Beat_speed = 7;	//约等�?? 0.6 倍数
			break;
		}

		default:{
			Beat_speed = 5;	//0.5s半个节拍,正常�?�度
			i=0;
			break;
		}
		}
	}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	//按下�??次音乐进入下�??�??
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0)//确保数据稳定
	{
		list++;
		if(list > list_max){
			list = 0;
		}
	}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

/**
  * @brief This function handles TIM2 global interrupt.
  */
void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�??
	}
  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
  * @brief This function handles EXTI line9 interrupt.
  */
void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOF, GPIO_PIN_9) == 0)//确保数据稳定
		EN = !EN;
  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

/**
  * @brief This function handles RCC wake-up interrupt.
  */
void RCC_WAKEUP_IRQHandler(void)
{
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 0 */

  /* USER CODE END RCC_WAKEUP_IRQn 0 */
  HAL_RCC_WAKEUP_IRQHandler();
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 1 */

  /* USER CODE END RCC_WAKEUP_IRQn 1 */
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

六、总结

这是一个基于STM32MP157A单片机的音乐盒设计较为全面和详细。主要包括以下几个方面:

  1. 硬件设计:

    • 使用STM32MP157A单片机作为核心控制器
    • 采用TIM2定时器产生0.1s中断控制节拍
    • 使用TIM4输出PWM信号驱动蜂鸣器播放音乐
    • 使用GPIO输入检测按键操作
  2. 软件设计:

    • 初始化音乐频率数据表,包括低音、中音和高音
    • 定义乐谱结构体,保存不同音乐的音符和节拍信息
    • 编写播放音乐的函数,根据乐谱信息控制蜂鸣器输出
    • 编写LED灯随音乐闪烁的函数
    • 实现通过按键控制音乐播放、速度、音量的功能
  3. 中断处理:

    • 使用外部中断处理按键输入,切换音乐、调节速度和音量
    • 使用定时器中断处理节拍控制,根据乐谱信息播放音乐
  4. 整体架构:

    • 将变量和函数划分到main.c和stm32mp1xx_it.c两个文件中,方便管理
    • 通过外部变量在两个文件中交换信息
    • 整体设计思路清晰,功能模块化,可扩展性强

总的来说,这个音乐盒的设计充分==利用了STM32MP157A单片机的各种外设资源,实现了一个功能丰富的音乐播放器。对于初学者来说,这个对于了解定时器和PWM有一定帮助。

帮助:关于电脑蓝屏解决方法(ST-LINK/ J-Link)

相关推荐
JaneZJW5 分钟前
Proteus仿真——《51单片机AD和DA转换器的设计》
单片机·嵌入式硬件·51单片机·proteus
NEWEVA__zzera222 小时前
利用光耦来隔离485芯片与串口引脚,实现自动收发485电路
单片机·嵌入式硬件
m0_748240542 小时前
STM32第十一课:STM32-基于标准库的42步进电机的简单IO控制(附电机教程,看到即赚到)
stm32·单片机·嵌入式硬件
温柔的男孩像海洋丶3 小时前
vscode的keil assistant 中搜索不到全局变量
ide·vscode·单片机
沐欣工作室_lvyiyi3 小时前
基于单片机的多功能智能小车(论文+源码)
stm32·单片机·嵌入式硬件·毕业设计·单片机毕业设计
鸿喵小仙女4 小时前
C# WPF读写STM32/GD32单片机Flash数据
stm32·单片机·c#·wpf
lucy153027510794 小时前
MCU 功耗基准测试
科技·单片机·嵌入式硬件·智能家居·信号处理·工控主板
m0_748240915 小时前
OpenMV与STM32通信全面指南
stm32·单片机·嵌入式硬件
Cchengzu7 小时前
阿里巴巴2017实习生笔试题(二)
stm32·单片机·嵌入式硬件
重生之我是数学王子10 小时前
单片机 STM32入门
stm32·单片机·嵌入式硬件