clip_grad_norm_ 梯度裁剪

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

相关推荐
OpenMiniServer2 分钟前
GitLab AI革命:如何将智能开发融入你的DevOps工作流
人工智能·gitlab·devops
寻星探路5 分钟前
【算法专题】哈希表:从“两数之和”到“最长连续序列”的深度解析
java·数据结构·人工智能·python·算法·ai·散列表
非凡ghost7 分钟前
ImageConverter(图像转换编辑工具)
图像处理·人工智能·windows·学习·计算机视觉·软件需求
猫头虎10 分钟前
Claude Code 2026 年1月9日迎来大更新:Agent 能力增强(2.1.0 详解 + 升级指南)
ide·人工智能·macos·langchain·编辑器·aigc·ai编程
子午13 分钟前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习
编码小哥21 分钟前
OpenCV特征匹配:暴力匹配与FLANN匹配实战
人工智能·opencv·计算机视觉
数字游民952726 分钟前
网站备案全流程回放(腾讯云)
人工智能·git·github·腾讯云·网站备案·waytoopc
飞哥数智坊29 分钟前
3位实战分享、6个案例展示,TRAE Friends@济南第二场圆满完成
人工智能·ai编程·trae
xiaobaishuoAI30 分钟前
全链路性能优化实战指南:从瓶颈定位到极致优化
大数据·人工智能·科技·百度·geo
人工小情绪30 分钟前
深度学习模型部署形式
人工智能·深度学习