clip_grad_norm_ 梯度裁剪

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

相关推荐
西猫雷婶7 分钟前
CNN的四维Pytorch张量格式
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
化作星辰21 分钟前
解决 OpenCV imread 在 Windows 中读取包含中文路径图片失败的问题
人工智能·opencv·计算机视觉
聚梦小课堂28 分钟前
2025.11.17 AI快讯
人工智能·安全·语言模型·新闻资讯·ai大事件
Jonathan Star33 分钟前
大模型调用工具
人工智能
倔强的石头10639 分钟前
AiOnly大模型深度测评:调用GPT-5 API+RAG知识库,快速构建智能客服机器人
人工智能·gpt·机器人·aionly
CoovallyAIHub40 分钟前
CV研究告别数据荒?PAN世界模型实现「多步推理与规划」,可自造高质量训练数据
深度学习·算法·计算机视觉
极客BIM工作室44 分钟前
多模态大模型的数据准备:从模态对齐到结构化成果
人工智能·深度学习·计算机视觉
极客BIM工作室1 小时前
潜在一致性模型(LCM):用“一致性蒸馏”让扩散模型实现“秒级生成”
人工智能
二川bro1 小时前
第47节:机器学习:3D姿态估计与动画驱动
人工智能·机器学习·3d
亚马逊云开发者1 小时前
云原生游戏网关架构:EKS + APISIX + Graviton 构建高性能游戏服务网关
人工智能