clip_grad_norm_ 梯度裁剪

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

相关推荐
晨非辰几秒前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
2301_812914871 分钟前
简单神经网络
人工智能·深度学习·神经网络
koo3641 小时前
pytorch环境配置
人工智能·pytorch·python
模型启动机5 小时前
黄仁勋GTC开场:「AI-XR Scientist」来了!
人工智能·ai·大模型
k***1955 小时前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG6 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7846 小时前
深度学习技术
人工智能·深度学习
KKKlucifer6 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全6 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖6 小时前
这个Q3,百度开始AI
人工智能·百度