clip_grad_norm_ 梯度裁剪

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

相关推荐
GISer_Jing8 小时前
AI开发实战:从零搭建智能应用
人工智能·prompt·aigc
WZGL12308 小时前
智慧养老方兴未艾,“AI+养老”让银龄老人晚年更美好
大数据·人工智能·物联网·生活·智能家居
狼爷8 小时前
一文看懂 AI 世界里的新黑话Skills、MCP、Projects、Prompts
人工智能·openai·ai编程
疾风sxp8 小时前
nl2sql技术实现自动sql生成之langchain4j SqlDatabaseContentRetriever
java·人工智能·langchain4j
DisonTangor8 小时前
阿里Qwen开源Qwen3-VL-Embedding 和 Qwen3-VL-Reranker
人工智能·搜索引擎·开源·aigc·embedding
其美杰布-富贵-李8 小时前
深度学习中的 tmux
服务器·人工智能·深度学习·tmux
<-->8 小时前
deepspeed vs vllm
人工智能
Sinokap8 小时前
Perplexity 10 月更新:AI 搜索体验再升级,让信息更近一步
人工智能·perplexity
檐下翻书1739 小时前
PC端免费跨职能流程图模板大全 中文
大数据·人工智能·架构·流程图·论文笔记
LaughingZhu9 小时前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营