clip_grad_norm_ 梯度裁剪

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

相关推荐
臭东西的学习笔记3 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生3 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605223 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8884 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新4 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录4 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划4 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5204 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
就这个丶调调5 小时前
VLLM部署全部参数详解及其作用说明
深度学习·模型部署·vllm·参数配置
余俊晖5 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别