【大数据面试题】33 手写一个 Flink SQL 样例

一步一个脚印,一天一道大数据面试题
博主希望能够得到大家的点赞收,藏支持!非常感谢~

点赞,收藏是情分,不点是本分。祝你身体健康,事事顺心!

我们来看看 Flink SQL大概流程和样例:

流程:

1.创建 流处理环境 StreamExecutionEnvironment env

2.创建 表环境 StreamTableEnvironment.create(env);

3.创建 source表,sink

4.用 table API 编写查询 SQL(返回 Table 对象)

5.执行 sink executeInsert("sink")

代码样例:

java 复制代码
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import static org.apache.flink.table.api.Expressions.$;

public class SqlDemo2 {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 1.创建表环境
        // 1.1 方法 1
//        EnvironmentSettings settings = EnvironmentSettings.newInstance()
//                .inStreamingMode()
//                .build();
//        TableEnvironment tableEnv = TableEnvironment.create(settings);

        // 1.2 方法 2
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 创建表
        // 用 datagen 生成随机数据作为 source
        tableEnv.executeSql("CREATE TABLE source (\n" +
                "    id INT\n" +
                "    ,ts BIGINT\n" +
                "    ,vc INT\n" +
                ") WITH (\n" +
                "    'connector' = 'datagen'\n" +
                "    ,'rows-per-second'='1'\n" +
                "    ,'fields.id.kind'='random'\n" +
                "    ,'fields.id.min'='1'\n" +
                "    ,'fields.id.max'='10'\n" +
                "    ,'fields.ts.kind'='sequence'\n" +
                "    ,'fields.ts.min'='1'\n" +
                "    ,'fields.ts.max'='1000000'\n" +
                "    ,'fields.vc.kind'='random'\n" +
                "    ,'fields.vc.min'='1'\n" +
                "    ,'fields.vc.max'='100'\n" +
                ");\n");

        tableEnv.executeSql("CREATE TABLE sink(\n" +
                "    id INT,\n" +
                "    sumVC INT,\n" +
                ") WITH (\n" +
                "'connector'='print'\n" +
                ");\n");

        // 执行查询
        Table source = tableEnv.from("source");
        Table select = source.where($("id").isGreater(5))
                .groupBy($("id"))
                .aggregate($("vc").sum().as("sumVC"))
                .select($("id"), $("sumVC"));

        // 执行 sink
        select.executeInsert("sink");

    }
}

运行截图:

我是近未来,祝你变得更强!

相关推荐
搞笑的秀儿32 分钟前
信息新技术
大数据·人工智能·物联网·云计算·区块链
SelectDB37 分钟前
SelectDB 在 AWS Graviton ARM 架构下相比 x86 实现 36% 性价比提升
大数据·架构·aws
二二孚日1 小时前
自用华为ICT云赛道Big Data第五章知识点-Flume海量日志聚合
大数据·华为
m0_623955663 小时前
Oracle使用SQL一次性向表中插入多行数据
数据库·sql·oracle
二二孚日3 小时前
自用华为ICT云赛道Big Data第四章知识点-Flink流批一体分布式实时处理引擎
大数据·华为
xufwind4 小时前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠5 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
jnrjian5 小时前
Oracle RAC环境 加错数据文件 的修复 归档非归档都没问题
sql·oracle
DeepSeek大模型官方教程6 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
大数据CLUB7 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark