【大数据面试题】33 手写一个 Flink SQL 样例

一步一个脚印,一天一道大数据面试题
博主希望能够得到大家的点赞收,藏支持!非常感谢~

点赞,收藏是情分,不点是本分。祝你身体健康,事事顺心!

我们来看看 Flink SQL大概流程和样例:

流程:

1.创建 流处理环境 StreamExecutionEnvironment env

2.创建 表环境 StreamTableEnvironment.create(env);

3.创建 source表,sink

4.用 table API 编写查询 SQL(返回 Table 对象)

5.执行 sink executeInsert("sink")

代码样例:

java 复制代码
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import static org.apache.flink.table.api.Expressions.$;

public class SqlDemo2 {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 1.创建表环境
        // 1.1 方法 1
//        EnvironmentSettings settings = EnvironmentSettings.newInstance()
//                .inStreamingMode()
//                .build();
//        TableEnvironment tableEnv = TableEnvironment.create(settings);

        // 1.2 方法 2
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 创建表
        // 用 datagen 生成随机数据作为 source
        tableEnv.executeSql("CREATE TABLE source (\n" +
                "    id INT\n" +
                "    ,ts BIGINT\n" +
                "    ,vc INT\n" +
                ") WITH (\n" +
                "    'connector' = 'datagen'\n" +
                "    ,'rows-per-second'='1'\n" +
                "    ,'fields.id.kind'='random'\n" +
                "    ,'fields.id.min'='1'\n" +
                "    ,'fields.id.max'='10'\n" +
                "    ,'fields.ts.kind'='sequence'\n" +
                "    ,'fields.ts.min'='1'\n" +
                "    ,'fields.ts.max'='1000000'\n" +
                "    ,'fields.vc.kind'='random'\n" +
                "    ,'fields.vc.min'='1'\n" +
                "    ,'fields.vc.max'='100'\n" +
                ");\n");

        tableEnv.executeSql("CREATE TABLE sink(\n" +
                "    id INT,\n" +
                "    sumVC INT,\n" +
                ") WITH (\n" +
                "'connector'='print'\n" +
                ");\n");

        // 执行查询
        Table source = tableEnv.from("source");
        Table select = source.where($("id").isGreater(5))
                .groupBy($("id"))
                .aggregate($("vc").sum().as("sumVC"))
                .select($("id"), $("sumVC"));

        // 执行 sink
        select.executeInsert("sink");

    }
}

运行截图:

我是近未来,祝你变得更强!

相关推荐
菜鸡儿齐5 小时前
spark组件-spark core(批处理)-rdd创建
大数据·分布式·spark
weixin_177297220697 小时前
家政小程序系统开发:打造便捷高效的家政服务平台
大数据·小程序·家政
言德斐8 小时前
SQL性能优化的思路及策略
数据库·sql·性能优化
galaxylove8 小时前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
源力祁老师10 小时前
ODOO数据文件(XML、CSV、SQL)是如何转换并加载到 Odoo 数据库
xml·数据库·sql
lang2015092810 小时前
Spring Boot SQL数据库全攻略
数据库·spring boot·sql
2401_8414956412 小时前
【数据库开发】个人信息管理的数据库创建以及查询方法(最简单)
数据库·sql·mysql·sqlite·数据库开发·个人数据库·管理个人信息
扁豆的主人14 小时前
Elasticsearch
大数据·elasticsearch·jenkins
想ai抽15 小时前
Flink重启策略有啥用
大数据·flink
TMT星球15 小时前
TCL华星t8项目正式开工,总投资额约295亿元
大数据·人工智能