【大数据面试题】33 手写一个 Flink SQL 样例

一步一个脚印,一天一道大数据面试题
博主希望能够得到大家的点赞收,藏支持!非常感谢~

点赞,收藏是情分,不点是本分。祝你身体健康,事事顺心!

我们来看看 Flink SQL大概流程和样例:

流程:

1.创建 流处理环境 StreamExecutionEnvironment env

2.创建 表环境 StreamTableEnvironment.create(env);

3.创建 source表,sink

4.用 table API 编写查询 SQL(返回 Table 对象)

5.执行 sink executeInsert("sink")

代码样例:

java 复制代码
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import static org.apache.flink.table.api.Expressions.$;

public class SqlDemo2 {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 1.创建表环境
        // 1.1 方法 1
//        EnvironmentSettings settings = EnvironmentSettings.newInstance()
//                .inStreamingMode()
//                .build();
//        TableEnvironment tableEnv = TableEnvironment.create(settings);

        // 1.2 方法 2
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        // 创建表
        // 用 datagen 生成随机数据作为 source
        tableEnv.executeSql("CREATE TABLE source (\n" +
                "    id INT\n" +
                "    ,ts BIGINT\n" +
                "    ,vc INT\n" +
                ") WITH (\n" +
                "    'connector' = 'datagen'\n" +
                "    ,'rows-per-second'='1'\n" +
                "    ,'fields.id.kind'='random'\n" +
                "    ,'fields.id.min'='1'\n" +
                "    ,'fields.id.max'='10'\n" +
                "    ,'fields.ts.kind'='sequence'\n" +
                "    ,'fields.ts.min'='1'\n" +
                "    ,'fields.ts.max'='1000000'\n" +
                "    ,'fields.vc.kind'='random'\n" +
                "    ,'fields.vc.min'='1'\n" +
                "    ,'fields.vc.max'='100'\n" +
                ");\n");

        tableEnv.executeSql("CREATE TABLE sink(\n" +
                "    id INT,\n" +
                "    sumVC INT,\n" +
                ") WITH (\n" +
                "'connector'='print'\n" +
                ");\n");

        // 执行查询
        Table source = tableEnv.from("source");
        Table select = source.where($("id").isGreater(5))
                .groupBy($("id"))
                .aggregate($("vc").sum().as("sumVC"))
                .select($("id"), $("sumVC"));

        // 执行 sink
        select.executeInsert("sink");

    }
}

运行截图:

我是近未来,祝你变得更强!

相关推荐
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata