【C++】77组合

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

使用回溯算法。我们可以按照以下步骤来实现:

  1. 创建一个辅助函数 backtrack,用来进行回溯搜索。其中包括当前组合的状态变量 current、起始搜索值 start 和结果集合 result。
  2. 在回溯函数中,如果当前组合的大小等于 k,则将 current 加入到结果集合中。
  3. 否则,在 [start, n] 范围内进行遍历,选择一个数加入到当前组合中,并递归调用 backtrack 函数搜索下一个数字。
  4. 搜索完成后,需要回溯,将当前加入的数移除,继续在下一个位置搜索其他可能的数。
cpp 复制代码
#include <vector>

void backtrack(int start, int n, int k, std::vector<int>& current, std::vector<std::vector<int>>& result) {
    if (current.size() == k) {
        result.push_back(current);
        return;
    }
    
    for (int i = start; i <= n; ++i) {
        current.push_back(i);
        backtrack(i + 1, n, k, current, result);
        current.pop_back(); // Backtrack
    }
}

std::vector<std::vector<int>> combine(int n, int k) {
    std::vector<std::vector<int>> result;
    std::vector<int> current;
    backtrack(1, n, k, current, result);
    return result;
}

时间复杂度分析:

在回溯函数中,进行了一个从 start 到 n 的循环,每个数都尝试加入到当前组合中,并进行递归调用。

对于每个位置,有两种选择:选或者不选,因此总共有 2^k 种可能的组合,其中 k 为要选择的数的个数。

每个组合的生成过程中,需要 O(k) 的时间来复制和移除元素。

因此,总的时间复杂度为 O(2^k * k),其中 k 为要选择的数的个数。

空间复杂度分析:

在递归调用过程中,需要 O(k) 的栈空间来存储当前的组合情况,其中 k 为要选择的数的个数。

存储结果的容器需要额外的 O© 空间来存储所有可能的组合,其中 C 为所有可能的组合数量。

因此,总的空间复杂度为 O(k + C),其中 k 为要选择的数的个数,C 为所有可能的组合数量。

综合来看,给定的组合算法的时间复杂度是指数级别的,取决于要选择的数的个数和范围的大小。而空间复杂度则主要受递归调用和结果集合的影响。

相关推荐
感哥1 小时前
C++ 面向对象
c++
沐怡旸3 小时前
【底层机制】std::shared_ptr解决的痛点?是什么?如何实现?如何正确用?
c++·面试
感哥9 小时前
C++ STL 常用算法
c++
saltymilk20 小时前
C++ 模板参数推导问题小记(模板类的模板构造函数)
c++·模板元编程
感哥20 小时前
C++ lambda 匿名函数
c++
沐怡旸1 天前
【底层机制】std::unique_ptr 解决的痛点?是什么?如何实现?怎么正确使用?
c++·面试
感哥1 天前
C++ 内存管理
c++
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
感哥1 天前
C++ 指针和引用
c++
感哥2 天前
C++ 多态
c++