【C++】77组合

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

使用回溯算法。我们可以按照以下步骤来实现:

  1. 创建一个辅助函数 backtrack,用来进行回溯搜索。其中包括当前组合的状态变量 current、起始搜索值 start 和结果集合 result。
  2. 在回溯函数中,如果当前组合的大小等于 k,则将 current 加入到结果集合中。
  3. 否则,在 [start, n] 范围内进行遍历,选择一个数加入到当前组合中,并递归调用 backtrack 函数搜索下一个数字。
  4. 搜索完成后,需要回溯,将当前加入的数移除,继续在下一个位置搜索其他可能的数。
cpp 复制代码
#include <vector>

void backtrack(int start, int n, int k, std::vector<int>& current, std::vector<std::vector<int>>& result) {
    if (current.size() == k) {
        result.push_back(current);
        return;
    }
    
    for (int i = start; i <= n; ++i) {
        current.push_back(i);
        backtrack(i + 1, n, k, current, result);
        current.pop_back(); // Backtrack
    }
}

std::vector<std::vector<int>> combine(int n, int k) {
    std::vector<std::vector<int>> result;
    std::vector<int> current;
    backtrack(1, n, k, current, result);
    return result;
}

时间复杂度分析:

在回溯函数中,进行了一个从 start 到 n 的循环,每个数都尝试加入到当前组合中,并进行递归调用。

对于每个位置,有两种选择:选或者不选,因此总共有 2^k 种可能的组合,其中 k 为要选择的数的个数。

每个组合的生成过程中,需要 O(k) 的时间来复制和移除元素。

因此,总的时间复杂度为 O(2^k * k),其中 k 为要选择的数的个数。

空间复杂度分析:

在递归调用过程中,需要 O(k) 的栈空间来存储当前的组合情况,其中 k 为要选择的数的个数。

存储结果的容器需要额外的 O© 空间来存储所有可能的组合,其中 C 为所有可能的组合数量。

因此,总的空间复杂度为 O(k + C),其中 k 为要选择的数的个数,C 为所有可能的组合数量。

综合来看,给定的组合算法的时间复杂度是指数级别的,取决于要选择的数的个数和范围的大小。而空间复杂度则主要受递归调用和结果集合的影响。

相关推荐
普if加的帕19 分钟前
java Springboot使用扣子Coze实现实时音频对话智能客服
java·开发语言·人工智能·spring boot·实时音视频·智能客服
2301_807611491 小时前
77. 组合
c++·算法·leetcode·深度优先·回溯
安冬的码畜日常1 小时前
【AI 加持下的 Python 编程实战 2_10】DIY 拓展:从扫雷小游戏开发再探问题分解与 AI 代码调试能力(中)
开发语言·前端·人工智能·ai·扫雷游戏·ai辅助编程·辅助编程
朝阳5811 小时前
Rust项目GPG签名配置指南
开发语言·后端·rust
微网兔子1 小时前
伺服器用什么语言开发呢?做什么用什么?
服务器·c++·后端·游戏
朝阳5811 小时前
Rust实现高性能目录扫描工具ll的技术解析
开发语言·后端·rust
程高兴2 小时前
基于Matlab的车牌识别系统
开发语言·matlab
YuforiaCode2 小时前
第十三届蓝桥杯 2022 C/C++组 修剪灌木
c语言·c++·蓝桥杯
YOULANSHENGMENG2 小时前
linux 下python 调用c++的动态库的方法
c++·python
牛马baby2 小时前
Java高频面试之并发编程-07
java·开发语言·面试