Kubernetes 系统监控Metrics Server、HorizontalPodAutoscaler、Prometheus

Metrics Server

Linux 系统命令 top 能够实时显示当前系统的 CPU 和内存利用率,它是性能分析和调优的基本工具。

Kubernetes 也提供了类似的命令,就是 kubectl top,不过默认情况下这个命令不会生效,必须要安装一个插件 Metrics Server 才可以。

Metrics Server 是一个专门用来收集 Kubernetes 核心资源指标(metrics)的工具,它定时从所有节点的 kubelet 里采集信息,但是对集群的整体性能影响极小,每个节点只大约会占用 1m 的 CPU 和 2MB 的内存,所以性价比非常高。

Metrics Server 的工作方式(如下图):它调用 kubelet 的 API 拿到节点和 Pod 的指标,再把这些信息交给 apiserver,这样 kubectl、HPA 就可以利用 apiserver 来读取指标了。

Metrics Server安装

Metrics Server 的镜像仓库用的是 gcr.io,下载很困难,所以需要走迂回路线,先下载下来,再上传到自己的dockerhub镜像仓库或者阿里云仓库
1、下载 Metrics Server 的镜像并上传到dockerhub

脚本内容

bash 复制代码
#!/bin/bash

# 定义变量
repo="registry.aliyuncs.com/google_containers"
name="k8s.gcr.io/metrics-server/metrics-server:v0.6.1"
src_name="metrics-server:v0.6.1"

# 从阿里云镜像仓库拉取镜像
docker pull ${repo}/${src_name}

# 重新标记镜像
docker tag ${repo}/${src_name} ${name}

# 删除原始镜像标签
docker rmi ${repo}/${src_name}
bash 复制代码
# 查看镜像
docker images 
bash 复制代码
# 登录dockerhub
docker login
# 打镜像tag
docker tag k8s.gcr.io/metrics-server/metrics-server:v0.6.1 dockerhub用户名/metrics-server:v0.6.1
# 推送镜像到自己的dockerhub上
docker push dockerhub用户名/metrics-server:v0.6.1

2、编写components.yaml
image: dockerHub名称/metrics-server:v0.6.1 镜像要改成自己的dockerHub用户名

yaml 复制代码
apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --kubelet-insecure-tls
        - --cert-dir=/tmp
        - --secure-port=10250
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        image: dockerHub名称/metrics-server:v0.6.1
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 10250
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
          requests:
            cpu: 100m
            memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
          seccompProfile:
            type: RuntimeDefault
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

执行命令

bash 复制代码
# 创建脚本文件
vim metrics_server_img
# 赋予脚本执行权限
chmod +x metrics_server_img
# 运行脚本
./metrics_server_img

使用 YAML 部署 Metrics Server

bash 复制代码
kubectl apply -f components.yaml
# 
kubectl get pod -n kube-system

# 获取pod详情,还常可以查看问题
kubectl describe pod -n kube-system metrics-server-587665fc75-46gr2

现在有了 Metrics Server 插件,我们就可以使用命令 kubectl top 来查看 Kubernetes 集群当前的资源状态了。它有两个子命令,node 查看节点的资源使用率,pod 查看 Pod 的资源使用率。

bash 复制代码
kubectl top node
kubectl top pod -n kube-system

HorizontalPodAutoscaler

Metrics Server另外一个更重要的功能是辅助实现应用的"水平自动伸缩"。

kubectl scale,可以任意增减 Deployment 部署的 Pod 数量,也就是水平方向的"扩容"和"缩容"。但是手动调整应用实例数量还是比较麻烦的,需要人工参与,也很难准确把握时机,难以及时应对生产环境中突发的大流量,所以最好能把这个"扩容""缩容"也变成自动化的操作。

Kubernetes 为此就定义了一个新的 API 对象,叫做"HorizontalPodAutoscaler",简称是"hpa"。顾名思义,它是专门用来自动伸缩 Pod 数量的对象,适用于 Deployment 和 StatefulSet,但不能用于 DaemonSet。

HorizontalPodAutoscaler 的能力完全基于 Metrics Server,它从 Metrics Server 获取当前应用的运行指标,主要是 CPU 使用率,再依据预定的策略增加或者减少 Pod 的数量。

使用 HorizontalPodAutoscaler

定义 Deployment 和 Service,创建一个 Nginx 应用,作为自动伸缩的目标对象:
hpa-ngx-pod.yml

yaml 复制代码
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ngx-hpa-dep

spec:
  replicas: 1
  selector:
    matchLabels:
      app: ngx-hpa-dep

  template:
    metadata:
      labels:
        app: ngx-hpa-dep
    spec:
      containers:
      - image: nginx:alpine
        name: nginx
        ports:
        - containerPort: 80

        resources:
          requests:
            cpu: 50m
            memory: 10Mi
          limits:
            cpu: 100m
            memory: 20Mi
---

apiVersion: v1
kind: Service
metadata:
  name: ngx-hpa-svc
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: ngx-hpa-dep

在这个 YAML 里只部署了一个 Nginx 实例,名字是 ngx-hpa-dep 。注意在它的 spec 里一定要用 resources 字段写清楚资源配额,否则 HorizontalPodAutoscaler 会无法获取 Pod 的指标,也就无法实现自动化扩缩容。

接下来要用命令 kubectl autoscale 创建一个 HorizontalPodAutoscaler 的样板 YAML 文件,它有三个参数:

  • min,Pod 数量的最小值,也就是缩容的下限。
  • max,Pod 数量的最大值,也就是扩容的上限。
  • cpu-percent,CPU 使用率指标,当大于这个值时扩容,小于这个值时缩容。

为刚才的 Nginx 应用创建 HorizontalPodAutoscaler,指定 Pod 数量最少 2 个,最多 10 个,CPU 使用率指标设置的小一点,5%,方便观察扩容现象:

bash 复制代码
export out="--dry-run=client -o yaml"              # 定义Shell变量
kubectl autoscale deploy ngx-hpa-dep --min=2 --max=10 --cpu-percent=5 $out

hpa-ngx.yml

bash 复制代码
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: ngx-hpa

spec:
  maxReplicas: 10
  minReplicas: 2
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: ngx-hpa-dep
  targetCPUUtilizationPercentage: 5

执行命令

bash 复制代码
# 生成pod
kubectl apply -f hpa-ngx-pod.yml
# 获取pod
kubectl get deploy ngx-hpa-dep
# 执行自动扩缩容
kubectl apply -f hpa-ngx.yml
# 查看deploy变化
kubectl get deploy ngx-hpa-dep

HorizontalPodAutoscaler 会根据 YAML 里的描述,找到要管理的 Deployment,把 Pod 数量调整成 2 个,再通过 Metrics Server 不断地监测 Pod 的 CPU 使用率。

下面来给 Nginx 加上压力流量,运行一个测试 Pod,使用的镜像是"httpd:alpine",它里面有 HTTP 性能测试工具 ab(Apache Bench):

bash 复制代码
kubectl run test -it --image=httpd:alpine -- sh

然后我们向 Nginx 发送一百万个请求,持续 1 分钟,再用 kubectl get hpa 来观察 HorizontalPodAutoscaler 的运行状况:

bash 复制代码
ab -c 10 -t 60 -n 1000000 'http://ngx-hpa-svc/'

-w watch 监控pod变化

bash 复制代码
kubectl get deploy ngx-hpa-dep -w

因为 Metrics Server 大约每 15 秒采集一次数据,所以 HorizontalPodAutoscaler 的自动化扩容和缩容也是按照这个时间点来逐步处理的。当它发现目标的 CPU 使用率超过了预定的 5% 后,就会以 2 的倍数开始扩容,一直到数量上限,然后持续监控一段时间,如果 CPU 使用率回落,就会再缩容到最小值。

Prometheus

Metrics Server 能够获取的指标还是太少了,只有 CPU 和内存,想要监控到更多更全面的应用运行状况,还得请出这方面的权威项目"Prometheus"。

Prometheus 系统的核心是它的 Server,里面有一个时序数据库 TSDB,用来存储监控数据,另一个组件 Retrieval 使用拉取(Pull)的方式从各个目标收集数据,再通过 HTTP Server 把这些数据交给外界使用。

在 Prometheus Server 之外还有三个重要的组件:

  • Push Gateway,用来适配一些特殊的监控目标,把默认的 Pull 模式转变为 Push 模式。
  • Alert Manager,告警中心,预先设定规则,发现问题时就通过邮件等方式告警。
  • Grafana 是图形化界面,可以定制大量直观的监控仪表盘。

选用"kube-prometheus安装Prometheus

1、下载 kube-prometheus 的源码包

bash 复制代码
#下载文件
wget https://github.com/prometheus-operator/kube-prometheus/archive/refs/tags/v0.11.0.tar.gz
#解压
tar -zxvf v0.11.0.tar.gz

2、修改 prometheus-service.yaml、grafana-service.yaml。

添加 type: NodePort 直接通过节点的 IP 地址访问
prometheus-service.yaml

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: prometheus
    app.kubernetes.io/instance: k8s
    app.kubernetes.io/name: prometheus
    app.kubernetes.io/part-of: kube-prometheus
    app.kubernetes.io/version: 2.36.1
  name: prometheus-k8s
  namespace: monitoring
spec:
  type: NodePort
  ports:
  - name: web
    port: 9090
    targetPort: web
  - name: reloader-web
    port: 8080
    targetPort: reloader-web
  selector:
    app.kubernetes.io/component: prometheus
    app.kubernetes.io/instance: k8s
    app.kubernetes.io/name: prometheus
    app.kubernetes.io/part-of: kube-prometheus
  sessionAffinity: ClientIP

grafana-service.yaml

yaml 复制代码
apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: grafana
    app.kubernetes.io/name: grafana
    app.kubernetes.io/part-of: kube-prometheus
    app.kubernetes.io/version: 8.5.5
  name: grafana
  namespace: monitoring
spec:
  type: NodePort
  ports:
  - name: http
    port: 3000
    targetPort: http
  selector:
    app.kubernetes.io/component: grafana
    app.kubernetes.io/name: grafana
    app.kubernetes.io/part-of: kube-prometheus

修改 kubeStateMetrics-deployment.yaml、prometheusAdapter-deployment.yaml,因为它们里面有两个存放在 gcr.io 的镜像,国内可能下载不下来

bash 复制代码
#走迂回路线,先下载下来,推送到自己的dockerHub上,当然也可以直接用
#当然也可以直接用 chronolaw/kube-state-metrics:v2.5.0镜像
docker pull chronolaw/kube-state-metrics:v2.5.0
#改成自己的dockerhub用户名
docker tag chronolaw/kube-state-metrics:v2.5.0 dockerhub用户名/kube-state-metrics:v2.5.0
#推送到自己的dockerHub上
docker push dockerhub用户名/kube-state-metrics/kube-state-metrics:v2.5.0


docker pull pengyc2019/prometheus-adapter:v0.9.1
docker tag pengyc2019/prometheus-adapter:v0.9.1 dockerhub用户名/prometheus-adapter:v0.9.1
docker push dockerhub用户名/prometheus-adapter:v0.9.1

然后修改kubeStateMetrics-deployment.yaml、prometheusAdapter-deployment.yaml 里面的image为自己的dockerHub 中的。或者也可以直接使用chronolaw/kube-state-metrics:v2.5.0、
pengyc2019/prometheus-adapter:v0.9.1
这两个镜像地址

bash 复制代码
image: k8s.gcr.io/kube-state-metrics/kube-state-metrics:v2.5.0
image: k8s.gcr.io/prometheus-adapter/prometheus-adapter:v0.9.1

image: dockerhub用户名/kube-state-metrics:v2.5.0
image: dockerhub用户名/prometheus-adapter:v0.9.1

执行两个 kubectl create 命令来部署 Prometheus,先是 manifests/setup 目录,创建名字空间等基本对象,然后才是 manifests 目录:
注意目录层级,下面是在 kube-prometheus-0.11.0这层执行的命令

bash 复制代码
kubectl create -f manifests/setup
kubectl create -f manifests

Prometheus 的对象都在名字空间"monitoring"里,创建之后可以用 kubectl get 来查看状态:

bash 复制代码
 kubectl get pod -n monitoring 

稍等一会再执行,目前在创建中

这些 Pod 都运行正常,查看它对外的服务端口:

bash 复制代码
kubectl get svc -n monitoring

前面修改了 Grafana 和 Prometheus 的 Service 对象,所以这两个服务就在节点上开了端口,Grafana 是"30251",Prometheus 有两个端口,其中"9090"对应的"30375"是 Web 端口。

在浏览器里输入节点的 IP 地址,再加上端口号"30375",我们就能看到 Prometheus 自带的 Web 界面,:

Web 界面上有一个查询框,可以使用 PromQL 来查询指标,生成可视化图表,比如在这个截图里我就选择了"node_memory_Active_bytes"这个指标,意思是当前正在使用的内存容量。

Grafana,访问节点的端口"30251",它会要求你先登录,默认的用户名和密码都是"admin":

Grafana 内部已经预置了很多强大易用的仪表盘,你可以在左侧菜单栏的"Dashboards - Browse"里任意挑选一个:

比如我选择了"Kubernetes / Compute Resources / Namespace (Pods)"这个仪表盘,就会出来一个非常漂亮图表,比 Metrics Server 的 kubectl top 命令要好看得多,各种数据一目了然:


More Prometheus

相关推荐
nVisual7 小时前
Prometheus连接nVisual实现资产拓扑业务关联分析
prometheus
yuguo.im10 小时前
Docker 两大基石:Namespace 和 Cgroups
运维·docker·容器
会飞的土拨鼠呀10 小时前
docker部署 outline(栗子云笔记)
笔记·docker·容器
没有bug.的程序员11 小时前
高频IO服务优化实战指南
java·jvm·spring·容器
lisanmengmeng12 小时前
docker 方式安装部署禅道zentao(五)
运维·docker·容器
露临霜14 小时前
Docker安装nginx
nginx·docker·容器
CAFEBABE 3416 小时前
安装完docker之后怎么使用
运维·docker·容器
测试人社区—小叶子17 小时前
测试开发面试高频“灵魂八问”深度解析与应答策略
网络·人工智能·测试工具·云原生·容器·面试·职场和发展
VermiliEiz19 小时前
使用二进制文件方式部署kubernetes(1)
kubernetes·云计算