文章目录
背景
如果我们想要根据json标注文件,获取里面的指定目标的裁剪区域,那么我们可以根据以下代码来实现(也可以校验标注情况)。
代码
python
from tqdm import tqdm
import os, json, cv2, copy
import numpy as np
def get_all_images(path, flags):
result_list, filenames = [], []
for root, dirs, files in os.walk(path):
for file in files:
filename, file_extension = os.path.splitext(file)
if file_extension.lower() in flags:
result_list.append(os.path.join(root, file))
filenames.append(file)
return result_list, filenames
def get_labelme_info(label_file, target):
anno = json.load(open(label_file, "r", encoding="utf-8"))
shapes = anno['shapes']
image_path = os.path.basename(anno['imagePath'])
labels = []
boxes = []
for s in shapes:
pts = s['points']
x1, y1 = pts[0]
x2, y2 = pts[1]
label = s['label']
if label in target:
labels.append(label)
boxes.append([x1, y1, x2, y2])
return image_path, boxes, labels
def plot_one_ori(image, boxs, label, color, mask_alpha=0.4):
[x1, y1, x2, y2] = boxs
mask_img = copy.deepcopy(image) # 1
ori_img = copy.deepcopy(mask_img) # 1
cropped_image = ori_img[y1:y2, x1:x2]
img_height, img_width = image.shape[:2]
size = min([img_height, img_width]) * 0.0006
text_thickness = int(min([img_height, img_width]) * 0.001)
cv2.rectangle(image, (x1, y1), (x2, y2), color, 3)
caption = f'{"原标签-"}{label}'
(tw, th), _ = cv2.getTextSize(text=caption, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=size, thickness=text_thickness)
th = int(th * 1.2)
cv2.rectangle(image, (x1, y2),
(x1 + tw, y2 + th), color, -1)
cv2.rectangle(mask_img, (x1, y2),
(x1 + tw, y2 + th), color, -1)
cv2.putText(image, caption, (x1, y2 + th), cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)
cv2.putText(mask_img, caption, (x1, y2 + th), cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)
image = cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
return image, cropped_image
def cv_imread(filePath):
cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), flags=cv2.IMREAD_COLOR)
return cv_img
if __name__ == "__main__":
img_folder = r"\\DSJ_NAS_90*******" # 原图和JSON文件位置
save_target_path = r"\\DSJ_NA************" # 保存位置
target = ["red_face"] # 获取指定目标,可传多个
os.makedirs(save_target_path, exist_ok=True)
img_list, filenames = get_all_images(img_folder, flags=[".jpg", ".png", ".jpeg"])
print(filenames)
for filename in filenames:
fn, file_extension = os.path.splitext(filename)
image_path = os.path.join(img_folder, filename) # 图片名
json_path = os.path.join(img_folder, "{}.json".format(fn)) # 标签文件名
save_path = os.path.join(save_target_path, "{}.jpg".format(fn))
_, ori_boxes, ori_labels = get_labelme_info(json_path, target)
for box, label in zip(ori_boxes, ori_labels):
x1, y1, x2, y2 = list(map(int, box))
image = cv_imread(image_path)
image, crop_image = plot_one_ori(image, [x1, y1, x2, y2], label, color=(0,0,255))
# cv2.imshow("1",crop_image)
# cv2.waitKey(1)
cv2.imencode('.jpg', crop_image)[1].tofile(save_path)