ClickHouse安装教程:开启你的列式数据库之旅

ClickHouse是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。以下是ClickHouse的一些基本使用步骤:

  1. 下载二进制文件:您可以通过运行以下curl命令在Linux、FreeBSD或macOS上本地下载ClickHouse:

    curl https://clickhouse.com/ | sh

此安装方式也是目前官方推荐的安装方式,执行完后,会下载二进制文件

  1. 安装应用:按照上一步输出的命令提示执行

    ./clickhouse install

中间会提示输入数据库密码,输入后回车

看到这个就是安装成功了

  1. 启动服务器:运行以下命令来启动ClickHouse服务器:

    clickhouse start

  1. 启动客户端 :使用clickhouse-client连接到您的ClickHouse服务。打开一个新的终端,切换到保存clickhouse二进制文件的目录,然后运行以下命令:

    clickhouse-client --password xxx

Warnings:

  • Delay accounting is not enabled, OSIOWaitMicroseconds will not be gathered. You can enable it using echo 1 > /proc/sys/kernel/task_delayacct or by using sysctl.
  • Maximum number of threads is lower than 30000. There could be problems with handling a lot of simultaneous queries.

一般不用管它,当然也可以调怎一下:

  • 延迟计算未启用:这意味着OSIOWaitMicroseconds(操作系统输入/输出等待时间的微秒数)将无法收集。要解决这个问题,您可以通过以下命令启用延迟计算:

    echo 1 > /proc/sys/kernel/task_delayacct

  • 线程数低于30000 :这个警告表明,当前设置的线程数可能不足以处理大量的同时查询。您可以通过修改ClickHouse的配置文件来增加线程数。在/etc/clickhouse-server/config.xml文件中找到max_threads设置,并根据您的服务器性能和负载情况进行调整。如:

    <yandex> ... <max_threads>30000</max_threads> ... </yandex>

调整后,重启ClickHouse服务

  1. 创建表 :使用CREATE TABLE定义一个新表。ClickHouse中的典型SQL DDL命令工作正常,但需要添加一个ENGINE子句。使用MergeTree可以利用ClickHouse的性能优势:

    CREATE TABLE my_table (
    user_id UInt32,
    message String,
    timestamp DateTime
    ) ENGINE = MergeTree PRIMARY KEY (user_id, timestamp)

  1. 插入数据 :您可以使用熟悉的INSERT INTO TABLE命令与ClickHouse一起使用,但重要的是要理解,每次插入到MergeTree表都会在存储中创建一个部分(文件夹)。为了最小化部分,一次性批量插入大量行(成千上万甚至数百万):

    INSERT INTO my_table (user_id, message, timestamp)
    VALUES
    (101, 'Hello, ClickHouse!', now()),
    (102, 'Insert a lot of rows per batch', yesterday()),
    (102, 'Sort your data based on your commonly-used queries', today()),
    (101, 'Granules are the smallest chunks of data read', now() + 5)

  1. 查询新表:您可以像使用任何SQL数据库一样编写SELECT查询:

    SELECT * FROM my_table ORDER BY timestamp

ClickHouse图形客户端

上面我们使用的是命令行客户端连接clickhouse,当然也是有图形客户端可以使用的,我们来看看DBeaver,基本上和MySQL一样。

相关推荐
时光书签24 分钟前
Mongodb副本集群为什么选择3个节点不选择4个节点
数据库·mongodb·nosql
SelectDB技术团队2 小时前
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
大数据·elasticsearch·金融·doris·日志分析
人才程序员2 小时前
【C++拓展】vs2022使用SQlite3
c语言·开发语言·数据库·c++·qt·ui·sqlite
极客先躯2 小时前
高级java每日一道面试题-2025年01月23日-数据库篇-主键与索引有什么区别 ?
java·数据库·java高级·高级面试题·选择合适的主键·谨慎创建索引·定期评估索引的有效性
指尖下的技术2 小时前
Mysql面试题----MyISAM和InnoDB的区别
数据库·mysql
MXsoft6183 小时前
华为E9000刀箱服务器监控指标解读
大数据·运维
永远是我的最爱3 小时前
数据库SQLite和SCADA DIAView应用教程
数据库·sqlite
指尖下的技术3 小时前
Mysql面试题----为什么B+树比B树更适合实现数据库索引
数据结构·数据库·b树·mysql
数据馅3 小时前
python自动生成pg数据库表对应的es索引
数据库·python·elasticsearch
cr72583 小时前
MCP Server 开发实战:无缝对接 LLM 和 Elasticsearch
大数据·elasticsearch·搜索引擎