ClickHouse安装教程:开启你的列式数据库之旅

ClickHouse是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。以下是ClickHouse的一些基本使用步骤:

  1. 下载二进制文件:您可以通过运行以下curl命令在Linux、FreeBSD或macOS上本地下载ClickHouse:

    curl https://clickhouse.com/ | sh

此安装方式也是目前官方推荐的安装方式,执行完后,会下载二进制文件

  1. 安装应用:按照上一步输出的命令提示执行

    ./clickhouse install

中间会提示输入数据库密码,输入后回车

看到这个就是安装成功了

  1. 启动服务器:运行以下命令来启动ClickHouse服务器:

    clickhouse start

  1. 启动客户端 :使用clickhouse-client连接到您的ClickHouse服务。打开一个新的终端,切换到保存clickhouse二进制文件的目录,然后运行以下命令:

    clickhouse-client --password xxx

Warnings:

  • Delay accounting is not enabled, OSIOWaitMicroseconds will not be gathered. You can enable it using echo 1 > /proc/sys/kernel/task_delayacct or by using sysctl.
  • Maximum number of threads is lower than 30000. There could be problems with handling a lot of simultaneous queries.

一般不用管它,当然也可以调怎一下:

  • 延迟计算未启用:这意味着OSIOWaitMicroseconds(操作系统输入/输出等待时间的微秒数)将无法收集。要解决这个问题,您可以通过以下命令启用延迟计算:

    echo 1 > /proc/sys/kernel/task_delayacct

  • 线程数低于30000 :这个警告表明,当前设置的线程数可能不足以处理大量的同时查询。您可以通过修改ClickHouse的配置文件来增加线程数。在/etc/clickhouse-server/config.xml文件中找到max_threads设置,并根据您的服务器性能和负载情况进行调整。如:

    <yandex> ... <max_threads>30000</max_threads> ... </yandex>

调整后,重启ClickHouse服务

  1. 创建表 :使用CREATE TABLE定义一个新表。ClickHouse中的典型SQL DDL命令工作正常,但需要添加一个ENGINE子句。使用MergeTree可以利用ClickHouse的性能优势:

    CREATE TABLE my_table (
    user_id UInt32,
    message String,
    timestamp DateTime
    ) ENGINE = MergeTree PRIMARY KEY (user_id, timestamp)

  1. 插入数据 :您可以使用熟悉的INSERT INTO TABLE命令与ClickHouse一起使用,但重要的是要理解,每次插入到MergeTree表都会在存储中创建一个部分(文件夹)。为了最小化部分,一次性批量插入大量行(成千上万甚至数百万):

    INSERT INTO my_table (user_id, message, timestamp)
    VALUES
    (101, 'Hello, ClickHouse!', now()),
    (102, 'Insert a lot of rows per batch', yesterday()),
    (102, 'Sort your data based on your commonly-used queries', today()),
    (101, 'Granules are the smallest chunks of data read', now() + 5)

  1. 查询新表:您可以像使用任何SQL数据库一样编写SELECT查询:

    SELECT * FROM my_table ORDER BY timestamp

ClickHouse图形客户端

上面我们使用的是命令行客户端连接clickhouse,当然也是有图形客户端可以使用的,我们来看看DBeaver,基本上和MySQL一样。

相关推荐
InterestOriented9 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
木风小助理9 小时前
PostgreSQL基础知识——DDL深度解析
数据库·postgresql
hanqunfeng9 小时前
(四十四)Redis8 新增的数据类型 -- Vector Set
数据库·redis·缓存
梦梦代码精10 小时前
BuildingAI vs Dify vs 扣子:三大开源智能体平台架构风格对比
开发语言·前端·数据库·后端·架构·开源·推荐算法
pingao14137811 小时前
太阳总辐射传感器:能源、气象领域的关键测量工具
大数据·能源
纪莫11 小时前
技术面:MySQL篇(InnoDB的锁机制)
java·数据库·java面试⑧股
百***787512 小时前
Grok-4.1技术深度解析:双版本架构突破与Python API快速集成指南
大数据·python·架构
Filotimo_12 小时前
在java开发中,cron表达式概念
java·开发语言·数据库
DBA小马哥12 小时前
从MongoDB迁移到金仓数据库:数据模型与业务连续性难题的保姆级指南
数据库·mongodb·dba
QZ1665609515913 小时前
低误差率、高性能、符合审计要求的金融数据库审计和监测最佳实践指南
数据库·金融