经典文献阅读之--OccNeRF(基于神经辐射场的自监督多相机占用预测)

0. 简介

作为基于视觉感知的基本任务,3D占据预测重建了周围环境的3D结构。它为自动驾驶规划和导航提供了详细信息。然而,大多数现有方法严重依赖于激光雷达点云来生成占据地面真实性,而这在基于视觉的系统中是不可用的。之前我们介绍了《经典文献阅读之---RenderOcc(使用2D标签训练多视图3D Occupancy模型)》。这里本文《OccNeRF: Self-Supervised Multi-Camera Occupancy Prediction with Neural Radiance Fields》提出了一种名为OccNeRF的方法,用于自监督多相机3D占用预测。该方法通过参数化重建的占用场来表示无限空间,并通过神经渲染将占用场转换为多相机深度图。为了提供几何和语义监督,该方法利用多帧图像之间的光度一致性进行监督。代码可在Github找到。

图1. OccNeRF概述。为了表示无界场景,我们提出了一个参数化坐标,将无限空间压缩到有界的占据场。在不使用任何标注标签的情况下,我们利用时间光度约束和预训练的开放词汇分割模型,提供几何和语义监督。

1. 主要贡献

  1. 我们使用2D骨干来提取多摄像头的2D特征。为了节省内存,我们直接插值2D特征,以获取3D体积特征,而不是使用繁重的跨视图注意力。
  2. 我们设计了特定的采样策略,将参数化占用场转换为具有神经渲染的多摄像头深度图。我们利用时间光度损失作为监督信号,这在自监督深度估计方法中常用 [21, 22, 46, 82, 89]。为了更好地利用时间线索,我们执行多帧光度约束
  3. 对于语义占用,我们提出了三种策略,将类名映射到提示词,这些提示词被馈送到预训练的开放词汇分割模型 [33, 43],以获取2D语义标签。

图2. OccNeRF的流程。我们首先使用2D主干网络提取多摄像头特征,然后将这些特征提升到3D空间,通过插值得到体积特征。参数化的占据场被重建以描述无界场景。为了获得渲染的深度和语义地图,我们采用了重新组织的采样策略进行体积渲染。多帧深度受光度损失监督。对于语义预测,我们采用了预训练的Grounded-SAM模型,并进行提示清理。绿色箭头表示监督信号。

3. 参数化占据场

点击经典文献阅读之--OccNeRF(基于神经辐射场的自监督多相机占用预测) - 古月居可查看全文

相关推荐
格林威6 分钟前
基于轮廓特征的工件分类识别:实现无模板快速分拣的 8 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·目标跟踪·分类·数据挖掘
8K超高清2 小时前
2026科技风口:有哪些前沿场景即将落地?
网络·人工智能·科技·数码相机·计算机视觉
涤生8434 小时前
halcon标定单目相机
数码相机
_李小白5 小时前
【Android 美颜相机】第三天:初识GPUImageView
android·数码相机
PHOSKEY5 小时前
3D应用丨光子精密解锁多个高难度3D相机拼接检测
数码相机·3d·制造
几道之旅1 天前
ROS2相机技术要点
数码相机
格林威1 天前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
中达瑞和-高光谱·多光谱1 天前
MAX-S810机载多光谱相机在草地森林覆盖面统计中的应用
数码相机
_李小白1 天前
【Android 美颜相机】第一天:认识Android-GPUImage项目
android·数码相机
努力犯错1 天前
Qwen-Image-Edit-2511-Multiple-Angles LoRA:多角度AI图像生成完全指南
人工智能·数码相机·计算机视觉