【Hive SQL 每日一题】统计各个商品今年销售额与去年销售额的增长率及排名变化

文章目录

测试数据

sql 复制代码
-- 创建商品表
DROP TABLE IF EXISTS products;
CREATE TABLE products (
    product_id INT,
    product_name STRING
);

INSERT INTO products VALUES
(1, 'Product A'),
(2, 'Product B'),
(3, 'Product C'),
(4, 'Product D'),
(5, 'Product E'),
(6, 'Product F'),
(7, 'Product G'),
(8, 'Product H'),
(9, 'Product I'),
(10, 'Product J'),
(11, 'Product K');

-- 创建销售表
DROP TABLE IF EXISTS sales;
CREATE TABLE sales (
    sale_id INT,
    product_id INT,
    sale_date STRING,
    amount DOUBLE
);

INSERT INTO sales VALUES
(101, 1, '2023-01-01', 100.0),
(102, 1, '2023-02-01', 150.0),
(103, 2, '2023-03-01', 200.0),
(104, 3, '2023-04-01', 50.0),
(105, 4, '2023-05-01', 300.0),
(106, 5, '2023-06-01', 250.0),
(107, 1, '2024-01-01', 120.0),
(108, 1, '2024-02-01', 180.0),
(109, 2, '2024-03-01', 220.0),
(110, 3, '2024-04-01', 70.0),
(111, 4, '2024-05-01', 330.0),
(112, 5, '2024-06-01', 270.0),
(113, 2, '2023-07-01', 180.0),
(114, 3, '2023-08-01', 60.0),
(115, 4, '2023-09-01', 310.0),
(116, 5, '2023-10-01', 260.0),
(117, 1, '2023-11-01', 190.0),
(118, 2, '2023-12-01', 210.0),
(119, 3, '2024-01-01', 75.0),
(120, 4, '2024-02-01', 340.0),
(121, 5, '2024-03-01', 280.0),
(122, 6, '2023-01-01', 130.0),
(123, 6, '2023-02-01', 160.0),
(124, 7, '2023-03-01', 190.0),
(125, 8, '2023-04-01', 220.0),
(126, 9, '2023-05-01', 250.0),
(127, 10, '2023-06-01', 280.0),
(128, 6, '2024-01-01', 140.0),
(129, 6, '2024-02-01', 170.0),
(130, 7, '2024-03-01', 200.0),
(131, 8, '2024-04-01', 230.0),
(132, 9, '2024-05-01', 260.0),
(133, 10, '2024-06-01', 290.0),
(134, 7, '2023-07-01', 175.0),
(135, 8, '2023-08-01', 205.0),
(136, 9, '2023-09-01', 235.0),
(137, 10, '2023-10-01', 265.0),
(138, 6, '2023-11-01', 145.0),
(139, 7, '2023-12-01', 175.0),
(140, 8, '2024-01-01', 215.0),
(141, 9, '2024-02-01', 245.0),
(142, 10, '2024-03-01', 275.0),
(143, 6, '2024-04-01', 155.0),
(144, 7, '2024-05-01', 185.0),
(145, 8, '2024-06-01', 225.0),
(147, 11, '2023-06-09', 0.0),
(146, 11, '2024-06-01', 233.0);

需求说明

统计各个商品今年销售额与去年销售额的增长率及销售额的排名变化。

增长率计算公式:(当期份额-上期份额)/ 上期份额 * 100%

结果示例:

product_name total_amount_2023 total_amount_2024 growth_rate rk_2023 rk_2024 rk_diff
Product D 610.0 670.0 9.8% 1 1 0
Product H 425.0 670.0 57.6% 9 1 8
Product J 545.0 565.0 3.7% 3 3 0
Product E 510.0 550.0 7.8% 5 4 1
Product I 485.0 505.0 4.1% 6 5 1
... ... ... ... ... ... ...

其中:

  • product_name 表示商品名称;
  • total_amount_2023 表示商品在 2023 年度的销售额;
  • total_amount_2024 表示商品在 2024 年度的销售额;
  • growth_rate 表示商品的增长率;
  • rk_2023 表示商品在 2023 年度中的销售额排名;
  • rk_2024 表示商品在 2024 年度中的销售额排名;
  • rk_diff 表示该商品年度销售额排名的变化。

注意,在这里商品销售额可能存在两种情况:

  1. 假设某商品 2023 年销售 0.0,而在 2024 年销售 50,那么这种情况下,销售额增长率统一设置为 100.0%
  2. 如果在两个年度销售均为 0.0,那么销售额增长率设置为 0.0%

需求实现

sql 复制代码
SELECT
    p.product_name,
    total_amount_2023,
    total_amount_2024,
    CASE WHEN total_amount_2024=0 AND total_amount_2023=0
        THEN "0.0%"
        WHEN total_amount_2023=0
        THEN "100.0%"
        ELSE
            CONCAT(CAST((total_amount_2024 - total_amount_2023) / total_amount_2023 as DECIMAL(5,3)) * 100,"%")
    END growth_rate,
    rk_2023,
    rk_2024,
    rk_2024 - rk_2023 rk_diff
FROM
    (SELECT
        product_id,
        total_amount_2023,
        total_amount_2024,
        RANK() OVER(ORDER BY total_amount_2023 DESC) rk_2023,
        RANK() OVER(ORDER BY total_amount_2024 DESC) rk_2024
    FROM
        (SELECT
            product_id,
            SUM(IF(year(sale_date)="2023",amount,0)) total_amount_2023,
            SUM(IF(year(sale_date)="2024",amount,0)) total_amount_2024
        FROM
            sales
        WHERE
            year(sale_date) IN ("2023","2024")
        GROUP BY
            product_id)t1 
        )t2
JOIN
    products p
ON
    t2.product_id = p.product_id;

输出结果如下:

分步解析

(1)获取去年与今年两个年度的数据,并进行聚合统计。

sql 复制代码
SELECT
    product_id,
    SUM(IF(year(sale_date)="2023",amount,0)) total_amount_2023,
    SUM(IF(year(sale_date)="2024",amount,0)) total_amount_2024
FROM
    sales
WHERE
    year(sale_date) IN ("2023","2024")
GROUP BY
    product_id;

(2)根据(1)中的结果,通过窗口函数排序,获取分别获取两个年度的销售额排名。

sql 复制代码
SELECT
    product_id,
    total_amount_2023,
    total_amount_2024,
    RANK() OVER(ORDER BY total_amount_2023 DESC) rk_2023,
    RANK() OVER(ORDER BY total_amount_2024 DESC) rk_2024
FROM
    (SELECT
        product_id,
        SUM(IF(year(sale_date)="2023",amount,0)) total_amount_2023,
        SUM(IF(year(sale_date)="2024",amount,0)) total_amount_2024
    FROM
        sales
    WHERE
        year(sale_date) IN ("2023","2024")
    GROUP BY
        product_id)t1;

(3)根据(2)中的结果,判断并计算两个年度的增长率以及排名变化,最终通过 join 连接商品表,获取商品名称。

sql 复制代码
SELECT
    p.product_name,
    total_amount_2023,
    total_amount_2024,
    CASE WHEN total_amount_2024=0 AND total_amount_2023=0
        THEN "0.0%"
        WHEN total_amount_2023=0
        THEN "100.0%"
        ELSE
            CONCAT(CAST((total_amount_2024 - total_amount_2023) / total_amount_2023 as DECIMAL(5,3)) * 100,"%")
    END growth_rate,
    rk_2023,
    rk_2024,
    rk_2023 - rk_2024 rk_diff
FROM
    (SELECT
        product_id,
        total_amount_2023,
        total_amount_2024,
        RANK() OVER(ORDER BY total_amount_2023 DESC) rk_2023,
        RANK() OVER(ORDER BY total_amount_2024 DESC) rk_2024
    FROM
        (SELECT
            product_id,
            SUM(IF(year(sale_date)="2023",amount,0)) total_amount_2023,
            SUM(IF(year(sale_date)="2024",amount,0)) total_amount_2024
        FROM
            sales
        WHERE
            year(sale_date) IN ("2023","2024")
        GROUP BY
            product_id)t1 
        )t2
JOIN
    products p
ON
    t2.product_id = p.product_id;

可能对于排名那里存在疑惑,为什么是 rk_2023 - rk_2024,不是 rk_2024 - rk_2023 呢?

惯性思维导致,在排序中,并不是排名越高值越大,相反,因为我们的排名越靠前(越高),其排名值越小,想到这里,就应该明白了。

相关推荐
A 计算机毕业设计-小途4 小时前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
不羁。。7 小时前
【撸靶笔记】第八关:GET - Blind - Boolian Based - Single Quotes
数据库·sql·mybatis
云天徽上8 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
君不见,青丝成雪8 小时前
Flink双流join
大数据·数据仓库·flink
麻辣清汤11 小时前
结合BI多维度异常分析(日期-> 商家/渠道->日期(商家/渠道))
数据库·python·sql·finebi
超级迅猛龙13 小时前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
青云交13 小时前
Java 大视界 -- Java 大数据分布式计算在基因测序数据分析与精准医疗中的应用(400)
java·hadoop·spark·分布式计算·基因测序·java 大数据·精准医疗
未来之窗软件服务18 小时前
数据库优化提速(一)之进销存库存管理—仙盟创梦IDE
数据库·sql·数据库调优
Lx35218 小时前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop