Spark SQL数据源 - 基本操作

Spark SQL 提供了丰富的API来与各种数据源进行交互,包括Parquet、JSON、CSV、JDBC等。以下是一些使用Spark SQL与数据源进行基本操作的基本步骤和示例代码。

1. 初始化SparkSession

首先,你需要初始化一个SparkSession对象,这是Spark SQL的入口点。

scala 复制代码
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()
  .appName("Spark SQL Basic Operations")
  .master("local[*]") // 在本地运行,使用所有可用的核心
  .getOrCreate()

// 导入隐式转换,以便可以直接使用DataFrame的API
import spark.implicits._

2. 读取数据源

读取Parquet文件
scala 复制代码
val parquetDF = spark.read.parquet("path/to/your/people.parquet")
parquetDF.show()
parquetDF.printSchema()
读取JSON文件
scala 复制代码
val jsonDF = spark.read.json("path/to/your/people.json")
jsonDF.show()
jsonDF.printSchema()
读取CSV文件
scala 复制代码
val csvDF = spark.read
  .option("header", "true") // 如果CSV文件包含标题行
  .option("inferSchema", "true") // 自动推断列的数据类型
  .csv("path/to/your/people.csv")
csvDF.show()
csvDF.printSchema()

3. 处理DataFrame

选择列
scala 复制代码
val selectedDF = parquetDF.select("name", "age")
selectedDF.show()
过滤数据
scala 复制代码
val filteredDF = parquetDF.filter($"age" > 20)
filteredDF.show()
分组并聚合
scala 复制代码
val groupedDF = parquetDF.groupBy("age").count()
groupedDF.show()
排序数据
scala 复制代码
val sortedDF = parquetDF.orderBy($"age".asc)
sortedDF.show()
连接DataFrame

假设你有两个DataFrame,df1df2,它们都有一个共同的列id,你可以使用join函数将它们连接起来。

scala 复制代码
val joinedDF = df1.join(df2, df1("id") === df2("id"))
joinedDF.show()

4. 将DataFrame写入数据源

写入Parquet文件
scala 复制代码
parquetDF.write.parquet("path/to/output/people.parquet")
写入CSV文件
scala 复制代码
parquetDF.write
  .option("header", "true")
  .csv("path/to/output/people.csv")
写入JSON文件

虽然Spark不直接支持将DataFrame写入单个JSON文件,但你可以将数据写入到一个JSON文件夹中,每个分区的数据会写入到一个单独的JSON文件中。

scala 复制代码
parquetDF.write.json("path/to/output/people.json")

5. 停止SparkSession

完成所有操作后,确保停止SparkSession以释放资源。

scala 复制代码
spark.stop()

这些示例展示了Spark SQL与数据源进行交互的基本操作。你可以根据自己的需求进一步扩展这些示例,使用更复杂的查询和转换来处理数据。

相关推荐
2501_943695333 分钟前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
实时数据19 分钟前
通过大数据的深度分析与精准营销策略,企业能够有效实现精准引流
大数据
枷锁—sha26 分钟前
【SRC】SQL注入快速判定与应对策略(一)
网络·数据库·sql·安全·网络安全·系统安全
子榆.1 小时前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
新芒1 小时前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
忆~遂愿2 小时前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
艾莉丝努力练剑3 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
怣504 小时前
MySQL多表连接:全外连接、交叉连接与结果集合并详解
数据库·sql
lili-felicity4 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_933670794 小时前
2026 高职大数据专业考什么证书对就业有帮助?
大数据