ClickHouse如何整合数据源:MySQL、HDFS...

一、ClickHouse数据源

ClickHouse 作为一个强大的列式数据库管理系统,支持多种数据源,使得用户能够方便地将数据导入 ClickHouse 进行存储和分析。以下是常见的 ClickHouse 数据源:

外部数据源

  1. HDFS
    支持从 Hadoop 分布式文件系统 (HDFS) 读取数据,适合大数据处理场景。
  2. File
    支持从本地文件系统中读取数据,常见的格式包括 CSV、TSV、JSON、Parquet 和 ORC 等。
  3. URL
    允许从 HTTP/HTTPS URL 读取数据,可以用于从 Web 服务或远程文件读取数据。
  4. Kafka
    支持从 Apache Kafka 消息队列读取数据,适用于实时数据流处理和分析。
  5. RabbitMQ
    支持从 RabbitMQ 消息队列读取数据,类似于 Kafka 的数据流处理。

数据库

  1. MySQL
    支持通过 MySQL 表引擎从 MySQL 数据库读取数据,可以实现 ClickHouse 和 MySQL 之间的数据集成。
  2. PostgreSQL
    通过 PostgreSQL 表引擎,可以从 PostgreSQL 数据库中读取数据,实现跨数据库查询。

流式数据

  1. Stream
    支持通过流式数据源进行实时数据处理,适合需要低延迟的数据分析和监控。
  2. Materialized Views
    可以基于流式数据源创建物化视图,实现实时数据聚合和预计算。

二、ClickHouse读取MySQL

创建ClickHouse数据库

首先,我们需要在ClickHouse中创建一个数据库,用于存放从MySQL导入的数据。可以使用以下命令创建数据库:

CREATE DATABASE IF NOT EXISTS clickhouse_schedule;

这个命令会检查clickhouse_db数据库是否存在,如果不存在,则创建它。

在ClickHouse中创建MySQL表的映射

接下来,我们需要在ClickHouse中创建一个MySQL表的映射。这可以通过使用ClickHouse的MySQL数据库引擎来实现。以下是创建映射的示例命令:

use clickhouse_schedule;

CREATE TABLE IF NOT EXISTS  clickhouse_schedule.qrtz_job_details
 (
  `SCHED_NAME` varchar(120) NOT NULL,
  `JOB_NAME` varchar(200) NOT NULL,
  `JOB_GROUP` varchar(200) NOT NULL,
  `DESCRIPTION` varchar(250) DEFAULT NULL,
  `JOB_CLASS_NAME` varchar(250) NOT NULL,
  `IS_DURABLE` varchar(1) NOT NULL,
  `IS_NONCONCURRENT` varchar(1) NOT NULL,
  `IS_UPDATE_DATA` varchar(1) NOT NULL,
  `REQUESTS_RECOVERY` varchar(1) NOT NULL,
  `JOB_DATA` blob
)
ENGINE = MySQL('ip:port', '{数据库名称}', '{表名称}', '{username}', '{password}')
AS SELECT * FROM qrtz_job_details;

在这个命令中,我们指定了MySQL服务器的地址、数据库名、表名以及访问MySQL所需的用户名和密码。clickhouse_schedule是在ClickHouse中创建的表,它将映射到MySQL中名为qrtz_job_details的表。

查询数据

导入数据后,我们可以像查询普通ClickHouse表一样查询映射表:

SELECT * FROM clickhouse_schedule.qrtz_job_details;

这个命令会返回clickhouse_table中所有记录。

三、ClickHouse读取HDFS

使用CREATE TABLE 语句和HDFS引擎来创建表。以下是一个示例命令,它创建了一个表,该表从HDFS上的TSV格式文件中读取数据:

CREATE TABLE hdfs_table
(
    column1_name column1_type,
    column2_name column2_type,
    ...
)
ENGINE = HDFS('hdfs://hdfs_host:port/path_to_file', 'TSV')
  • hdfs_table是创建的表的名称
  • column1_namecolumn2_name是列的名称
  • column1_typecolumn2_type是列的数据类型
  • hdfs://hdfs_host:port/path_to_file是指向HDFS上文件的URI
  • TSV是文件的格式。
相关推荐
苹果醋32 小时前
React源码02 - 基础知识 React API 一览
java·运维·spring boot·mysql·nginx
别致的影分身3 小时前
使用C语言连接MySQL
数据库·mysql
过过过呀Glik3 小时前
在 Ubuntu 上安装 MySQL 的详细指南
mysql·ubuntu
Sunyanhui16 小时前
牛客网 SQL36查找后排序
数据库·sql·mysql
老王笔记6 小时前
MHA binlog server
数据库·mysql
2401_871213308 小时前
mysql高阶语句
数据库·mysql
山山而川粤10 小时前
网络安全宣传系统|Java|SSM|JSP|
java·开发语言·后端·学习·mysql
_汤姆大叔10 小时前
MySQL 高级操作全解析
数据库·mysql
呼啦啦啦啦啦啦啦啦12 小时前
【MySQL篇】聚合查询,联合查询
数据库·mysql
今天不coding12 小时前
MySQL体系架构
数据库·mysql·体系架构·网络连接层·服务层·存储引擎层·系统文件层