图数据集的加载

原文参考官方文档:

https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html

torch_geometric.loader 库中, 该库中包含了多种 图数据集的 加载方式,

这里主要介绍 DenseDataLoader and DataLoader 这两者之间的区别;

Difference between DenseDataLoader and DataLoader in PyTorch Geometric

1. DenseDataLoader:

  • Purpose: Specifically designed for loading batches of dense graph data where all graph attributes have the same shape.

  • Stacking: Stacks all graph attributes in a new dimension, which means that all graph data needs to be dense (i.e., have the same shape).

  • Use Case: Ideal for situations where the adjacency matrices and feature matrices of graphs in the dataset are of consistent size and can be stacked without any padding or truncation.

  • Implementation : Uses a custom collate_fn that stacks all attributes of the graph data objects into a new dimension. This is suitable for dense graph data.

    python 复制代码
    class DenseDataLoader(torch.utils.data.DataLoader):
        ...
        def __init__(self, dataset: Union[Dataset, List[Data]],
                     batch_size: int = 1, shuffle: bool = False, **kwargs):
            kwargs.pop('collate_fn', None)  # Ensure no other collate function is used
            super().__init__(dataset, batch_size=batch_size, shuffle=shuffle,
                             collate_fn=collate_fn, **kwargs)

2. DataLoader:

  • Purpose: General-purpose data loader for PyTorch Geometric datasets. It can handle both homogeneous and heterogeneous graph data.

  • Flexibility: Can handle varying graph sizes and structures by merging data objects into mini-batches. Suitable for heterogeneous data where graph attributes may differ in shape and size.

  • Collate Function : Uses a custom collate function, Collater, which can handle different types of data elements (e.g., BaseData, Tensor, etc.). This function is versatile and can manage the complexity of heterogeneous graph data.

  • Use Case: Ideal for most graph data scenarios, especially when graphs vary in size and shape, and when working with both homogeneous and heterogeneous data.

    python 复制代码
    class DataLoader(torch.utils.data.DataLoader):
        ...
        def __init__(
            self,
            dataset: Union[Dataset, Sequence[BaseData], DatasetAdapter],
            batch_size: int = 1,
            shuffle: bool = False,
            follow_batch: Optional[List[str]] = None,
            exclude_keys: Optional[List[str]] = None,
            **kwargs,
        ):
            kwargs.pop('collate_fn', None)  # Ensure no other collate function is used
            super().__init__(
                dataset,
                batch_size,
                shuffle,
                collate_fn=Collater(dataset, follow_batch, exclude_keys),
                **kwargs,
            )

Key Differences

  1. Data Shape Consistency:

    • DenseDataLoader: Requires all graph attributes to have the same shape.
    • DataLoader: Can handle variable graph sizes and shapes.
  2. Batching Mechanism:

    • DenseDataLoader: Stacks all attributes into a new dimension, suitable for dense data.
    • DataLoader : Uses the Collater class to handle complex data batching, suitable for heterogeneous and variable-sized graph data.
  3. Use Cases:

    • DenseDataLoader: Best for datasets with consistent graph sizes and shapes.
    • DataLoader: Best for general-purpose graph data loading, especially with varying graph structures.

Practical Example of Each Loader

DenseDataLoader Example:

python 复制代码
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DenseDataLoader

# Load a dataset where all graphs have the same number of nodes
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')

# Create a DenseDataLoader
loader = DenseDataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:
    print(batch)
    break

DataLoader Example:

python 复制代码
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader

# Load a dataset with graphs of varying sizes
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')

# Create a DataLoader
loader = DataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:
    print(batch)
    break

Summary

  • Use DenseDataLoader when working with datasets where all graphs have the same size and shape.
  • Use DataLoader for more flexible and general-purpose graph data loading, especially when dealing with variable graph structures.
相关推荐
说私域17 分钟前
“开源AI智能名片链动2+1模式S2B2C商城小程序”在县级市场的应用与挑战分析
人工智能·小程序·开源
GoldenSpider.AI37 分钟前
突破AI视频一致性瓶颈:“无废话”四步电影级工作流
人工智能·flow·elevenlabs·google whisk·gemini gem
编程小白_正在努力中41 分钟前
第七章深度解析:从零构建智能体框架——模块化设计与全流程落地指南
人工智能·深度学习·大语言模型·agent·智能体
机器之心42 分钟前
VinciCoder:多模态统一代码生成框架和视觉反馈强化学习,数据代码模型权重已开源
人工智能·openai
化作星辰1 小时前
深度学习_三层神经网络传播案例(L0->L1->L2)
人工智能·深度学习·神经网络
机器之心1 小时前
首个完整开源的生成式推荐框架MiniOneRec,轻量复现工业级OneRec!
人工智能·openai
_codemonster1 小时前
深度学习实战(基于pytroch)系列(十五)模型构造
人工智能·深度学习
海域云赵从友2 小时前
2025年印尼服务器选型指南:跨境业务落地的合规与性能双解
人工智能·git·github
用户5191495848452 小时前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI3 小时前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手