图数据集的加载

原文参考官方文档:

https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html

torch_geometric.loader 库中, 该库中包含了多种 图数据集的 加载方式,

这里主要介绍 DenseDataLoader and DataLoader 这两者之间的区别;

Difference between DenseDataLoader and DataLoader in PyTorch Geometric

1. DenseDataLoader:

  • Purpose: Specifically designed for loading batches of dense graph data where all graph attributes have the same shape.

  • Stacking: Stacks all graph attributes in a new dimension, which means that all graph data needs to be dense (i.e., have the same shape).

  • Use Case: Ideal for situations where the adjacency matrices and feature matrices of graphs in the dataset are of consistent size and can be stacked without any padding or truncation.

  • Implementation : Uses a custom collate_fn that stacks all attributes of the graph data objects into a new dimension. This is suitable for dense graph data.

    python 复制代码
    class DenseDataLoader(torch.utils.data.DataLoader):
        ...
        def __init__(self, dataset: Union[Dataset, List[Data]],
                     batch_size: int = 1, shuffle: bool = False, **kwargs):
            kwargs.pop('collate_fn', None)  # Ensure no other collate function is used
            super().__init__(dataset, batch_size=batch_size, shuffle=shuffle,
                             collate_fn=collate_fn, **kwargs)

2. DataLoader:

  • Purpose: General-purpose data loader for PyTorch Geometric datasets. It can handle both homogeneous and heterogeneous graph data.

  • Flexibility: Can handle varying graph sizes and structures by merging data objects into mini-batches. Suitable for heterogeneous data where graph attributes may differ in shape and size.

  • Collate Function : Uses a custom collate function, Collater, which can handle different types of data elements (e.g., BaseData, Tensor, etc.). This function is versatile and can manage the complexity of heterogeneous graph data.

  • Use Case: Ideal for most graph data scenarios, especially when graphs vary in size and shape, and when working with both homogeneous and heterogeneous data.

    python 复制代码
    class DataLoader(torch.utils.data.DataLoader):
        ...
        def __init__(
            self,
            dataset: Union[Dataset, Sequence[BaseData], DatasetAdapter],
            batch_size: int = 1,
            shuffle: bool = False,
            follow_batch: Optional[List[str]] = None,
            exclude_keys: Optional[List[str]] = None,
            **kwargs,
        ):
            kwargs.pop('collate_fn', None)  # Ensure no other collate function is used
            super().__init__(
                dataset,
                batch_size,
                shuffle,
                collate_fn=Collater(dataset, follow_batch, exclude_keys),
                **kwargs,
            )

Key Differences

  1. Data Shape Consistency:

    • DenseDataLoader: Requires all graph attributes to have the same shape.
    • DataLoader: Can handle variable graph sizes and shapes.
  2. Batching Mechanism:

    • DenseDataLoader: Stacks all attributes into a new dimension, suitable for dense data.
    • DataLoader : Uses the Collater class to handle complex data batching, suitable for heterogeneous and variable-sized graph data.
  3. Use Cases:

    • DenseDataLoader: Best for datasets with consistent graph sizes and shapes.
    • DataLoader: Best for general-purpose graph data loading, especially with varying graph structures.

Practical Example of Each Loader

DenseDataLoader Example:

python 复制代码
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DenseDataLoader

# Load a dataset where all graphs have the same number of nodes
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')

# Create a DenseDataLoader
loader = DenseDataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:
    print(batch)
    break

DataLoader Example:

python 复制代码
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader

# Load a dataset with graphs of varying sizes
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')

# Create a DataLoader
loader = DataLoader(dataset, batch_size=32, shuffle=True)

for batch in loader:
    print(batch)
    break

Summary

  • Use DenseDataLoader when working with datasets where all graphs have the same size and shape.
  • Use DataLoader for more flexible and general-purpose graph data loading, especially when dealing with variable graph structures.
相关推荐
artificiali2 小时前
Anaconda配置pytorch的基本操作
人工智能·pytorch·python
酱香编程,风雨兼程3 小时前
深度学习——基础知识
人工智能·深度学习
Lossya3 小时前
【机器学习】参数学习的基本概念以及贝叶斯网络的参数学习和马尔可夫随机场的参数学习
人工智能·学习·机器学习·贝叶斯网络·马尔科夫随机场·参数学习
#include<菜鸡>4 小时前
动手学深度学习(pytorch土堆)-04torchvision中数据集的使用
人工智能·pytorch·深度学习
程序员-杨胡广4 小时前
从0-1 用AI做一个赚钱的小红书账号(不是广告不是广告)
人工智能
AI进修生4 小时前
全新WordPress插件简化成功之路
人工智能·语言模型·自然语言处理
GG_Bond194 小时前
【项目设计】Facial-Hunter
服务器·人工智能
chnyi6_ya5 小时前
深度学习的笔记
服务器·人工智能·pytorch
知来者逆5 小时前
讨论人机交互研究中大语言模型的整合与伦理问题
人工智能·gpt·语言模型·自然语言处理·人机交互
i嗑盐の小F5 小时前
【IEEE出版,高录用 | EI快检索】第二届人工智能与自动化控制国际学术会议(AIAC 2024,10月25-27)
图像处理·人工智能·深度学习·算法·自然语言处理·自动化