AI智能体研发之路-模型篇(四):一文入门pytorch开发

博客导读:

《AI---工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI---模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争​​​​​​​

AI智能体研发之路-模型篇(四):一文入门pytorch开发

目录

一、引言

二、pytorch介绍

[2.1 pytorch历史](#2.1 pytorch历史)

[2.2 pytorch特点](#2.2 pytorch特点)

[2.2.1 支持GPU加速的张量计算库](#2.2.1 支持GPU加速的张量计算库)

[2.2.2 包含自动求导系统的动态图机制](#2.2.2 包含自动求导系统的动态图机制)

[2.3 pytorch安装](#2.3 pytorch安装)

三、pytorch实战

[3.1 引入依赖的python库](#3.1 引入依赖的python库)

[3.2 定义三层神经网络](#3.2 定义三层神经网络)

[3.3 训练数据准备](#3.3 训练数据准备)

[3.4 实例化模型、定义损失函数与优化器](#3.4 实例化模型、定义损失函数与优化器)

[3.5 启动训练,迭代收敛](#3.5 启动训练,迭代收敛)

[3.6 模型评估](#3.6 模型评估)

[3.7 可以直接跑的代码](#3.7 可以直接跑的代码)

四、总结


一、引言

要深入了解大模型底层原理,先要能手撸transformer模型结构,在这之前,pytorch、tensorflow等深度学习框架必须掌握,之前做深度学习时用的tensorflow,做aigc之后接触pytorch多一些,今天写一篇pytorch的入门文章吧,感兴趣的可以一起聊聊。

二、pytorch介绍

2.1 pytorch历史

PyTorch由facebook人工智能研究院研发,2017年1月被提出,是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

​PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。

2.2 pytorch特点

Pytorch是一个python包,提供两个高级功能:

2.2.1 支持GPU加速的张量计算库

张量(tensor):可以理解为多位数组,是Pytorch的基本计算单元,Pytorch的特性就是可以基于GPU快速完成张量的计算,包括求导、切片、索引、数学运算、线性代数、归约等

python 复制代码
import torch
import torch.nn.functional as F

# 1. 张量的创建
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
y = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x) #tensor([[1, 2, 3],[4, 5, 6]])
print(y) #tensor([[1, 2, 3],[4, 5, 6]])

# 2. 张量的运算
z=x+y
print(z) #tensor([[2, 4, 6],[8, 10, 12]])

# 3. 张量的自动求导
x = torch.tensor(3.0, requires_grad=True)
print(x.grad) #None

y = x**2 
y.backward()
print(x.grad) #tensor(6.)

2.2.2 包含自动求导系统的动态图机制

Pytorch提供了一种独一无二的构建神经网络的方式:动态图机制

不同于TensorFlow、Caffe、CNTK等静态神经网络:网络构建一次反复使用,如果修改了网络不得不重头开始。

在Pytorch中,使用了一种"反向模式自动微分的技术(reverse-mode auto-differentiation)",允许在零延时或开销的情况下任意更改网络。

2.3 pytorch安装

这里建议大家采用conda创建环境,采用pip管理pytorch包

1.建立名为pytrain,python版本为3.11的conda环境

bash 复制代码
conda create -n pytrain python=3.11
conda activate pytrain

2.采用pip下载torch和torchvision包

bash 复制代码
pip install torch  torchvision torchmetrics  -i https://mirrors.cloud.tencent.com/pypi/simple

这里未指定版本,默认下载最新版本torch-2.3.0、torchvision-0.18.0以及其他一堆依赖。

三、pytorch实战

动手实现一个三层DNN网络:

3.1 引入依赖的python库

这里主要是torch、torch.nn网络、torch.optim优化器、torch.utils.data数据处理等

python 复制代码
import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块

3.2 定义三层神经网络

引入nn.Module类,编写构造函数定义网络结构,编写前向传播过程定义激活函数。

  1. 通过继承torch.nn.Module类,对神经网络层进行构造,Module类在pytorch中非常重要,他是所有神经网络层和模型的基类。
  2. 定义模型构造函数__init__:在这里定义网络结构,输入为每一层的节点数,采用torch.nn.Linear这个类,定义全连接线性层,进行线性变换,通过第一层节点输入数据*权重矩阵(n * [n,k] = k),加偏置项,再配以激活函数得到下一层的输入。
  1. 定义前向传播forward过程:采用relu、sigmod、tanh等激活函数,对每一层计算得到的原始值归一化输出。一般建议采用relu。sigmod的导数在0、1极值附近会接近于0,产生"梯度消失"的问题,较长的精度会导致训练非常缓慢,甚至无法收敛。relu导数一直为1,更好的解决了梯度消失问题。
python 复制代码
# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数

    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x

3.3 训练数据准备

  1. 定义输入的特征数、隐层节点数、输出类别数,样本数,
  2. 采用torch.randn、torch.randint函数构造训练数据,
  1. 采用TensorDataset、DataLoader类分别进行张量数据集构建以及数据导入
python 复制代码
# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))

# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

3.4 实例化模型、定义损失函数与优化器

损失函数与优化器是机器学习的重要概念,先看代码,nn来自于torch.nn,optim来自于torch.optim,均为torch封装的工具类

python 复制代码
# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)

损失函数:用于衡量模型预测值与真实值的差距,是模型优化的目标。常见损失函数为

  • 均方误差损失(MSE):用于回归问题,衡量预测值与真实值之间的平方差的平均值。
  • 交叉熵损失(Cross Entropy Loss):用于分类问题,衡量预测概率分布与真实分布之间的差距。
  • 二进制交叉熵损失(Binary Cross-Entropy Loss):是一种用于二分类任务的损失函数,通常用于测量模型的二分类输出与实际标签之间的差距,不仅仅应用于0/1两个数,0-1之间也都能学习

优化器:优化算法用于调整模型参数,以最小化损失函数。常见的优化算法为

  • 随机梯度下降(SGD):通过对每个训练样本计算梯度并更新参数,计算简单,但可能会陷入局部最优值。
  • Adam:结合了动量和自适应学习率调整的方法,能够快速收敛且稳定性高,广泛应用于各种深度学习任务。

3.5 启动训练,迭代收敛

模型训练可以简单理解为一个"双层for循环"

第一层for循环:迭代的轮数,这里是10轮

第二层for循环:针对每一条样本,前、后向传播迭代一遍网络,1000条样本就迭代1000次。

所以针对10轮迭代,每轮1000条样本,要迭代网络10*1000=10000次。

python 复制代码
# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重

        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')

print('Training finished.')

运行后可以看到loss逐步收敛:

3.6 模型评估

通过引入torchmetrics库对模型效果进行评估,主要分为以下几步

  1. 构造测试集数据;
  2. 测试集数据加载;
  3. 将模型切至评估模式;
  4. 初始化模型准确率与召回率的计算器;
  5. 循环测试样本,更新准确率与召回率计算器;
  1. 打印输出
python 复制代码
import torchmetrics # 导入torchmetrics

test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))

# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)

# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()

# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)

with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)

# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')

print('Evaluation finished.')

运行后,可以输出模型的准确率与召回率,由于采用随机生成的测试数据且迭代轮数较少,具体数值不错参考,可以根据自己需要丰富数据。

3.7 可以直接跑的代码

附可以直接运行的代码,先跑起来,再一行行研究!

python 复制代码
import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块


# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数

    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x

# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))

# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重

        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(data_loader)}')

print('Training finished.')

#for param in model.parameters():
#    print(param.data)


import torchmetrics # 导入torchmetrics

test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))

# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)

# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()

# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)

with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        # 将输出通过softmax转换为概率分布(虽然CrossEntropyLoss内部做了,但这里为了计算指标明确显示)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)

# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')

print('Evaluation finished.')

四、总结

本文先对pytorch深度学习框架历史、特点及安装方法进行介绍,接下来基于pytorch带读者一步步开发一个简单的三层神经网络程序,最后附可执行的代码供读者进行测试学习。个人感觉网络结构部分比tensorflow稍微抽象一点点,不过各有优劣吧,初学者最好对比着学习。下一篇写tensorflow吧,一起讲了大家可以对比着看。喜欢的话期待您的关注、点赞、收藏,您的互动是对我最大的鼓励!

如果还有时间,可以看看我的其他文章:

《AI---工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署​​​​​​​

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI---模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争​​​​​​​

AI智能体研发之路-模型篇(四):一文入门pytorch开发

相关推荐
艾思科蓝-何老师【H8053】9 分钟前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_4526006937 分钟前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工37 分钟前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
右恩1 小时前
AI大模型重塑软件开发:流程革新与未来展望
人工智能
图片转成excel表格1 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
ApiHug2 小时前
ApiSmart x Qwen2.5-Coder 开源旗舰编程模型媲美 GPT-4o, ApiSmart 实测!
人工智能·spring boot·spring·ai编程·apihug
哇咔咔哇咔2 小时前
【科普】简述CNN的各种模型
人工智能·神经网络·cnn
李歘歘2 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习
Chatopera 研发团队2 小时前
机器学习 - 为 Jupyter Notebook 安装新的 Kernel
人工智能·机器学习·jupyter