《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023

《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023

前言

亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~

无抄袭,无复制,纯手工敲击键盘~

今天为大家带来的是《Towards Robust Personalized Dialogue Generation via Order-Insensitive Representation Regularization》


出版:ACL

时间:2023

类型:个性化对话生成

特点:个性化;回复生成;鲁棒性;表示正则化

作者:Liang Chen

第一作者机构:The Chinese University of Hong Kong

相关个性化生成论文推荐

简介

生成个性化一致性回复是至关重要的,过往的方法只是将个性化信息进行简单地拼接,然而作者通过实验分析发现,个性化信息输入模型的顺序会产生相差较大的结果,为了避免模型对顺序过于敏感,本文提出一种对顺序不敏感的生成方法(限制的优化方法)

如上图所示,不同的 Persona 对于生成的结果有较大的影响,紫色框的回复明显比蓝色框的回复更具有一致性

更具体的实验数据可以从上表中看出,作者将个性化信息所有可能的结果拼接上上下文依次输入到模型中,将最好的结果和最差的结果分别记录下来,由此得知,the ordering of persona in the input leads to different representations of context and response

问题定义

方法

作者将个性化优化问题转化为在不确定个性化信息输入顺序的情况下优化个性化模型

具体做法就是将不同的个性化顺序输入模型后,使得输出的表示彼此之间差异不大,理想情况下,不管什么输入顺序最后都能输出相同的表示

损失函数

γ \gamma γ 是一个乘数,可以随着训练过程进行更新

实验结果

从实验结果可以看出,使用ORIG之后提高了最差顺序的表现,降低了最好顺序的表现,总体来说就是提高了均值和方差

相关推荐
Eastmount12 小时前
[论文阅读] (47)LAMD: 基于大模型上下文驱动的Android恶意软件检测与分类
android·论文阅读·大模型·系统安全·恶意代码检测
蓝海星梦12 小时前
【论文笔记】DeepSeekMath-V2: 基于自我验证的数学推理新范式
论文阅读·人工智能·自然语言处理·数学推理·deepseek
EEPI1 天前
【论文阅读】Vision Language Models are In-Context Value Learners
论文阅读·人工智能·语言模型
墨绿色的摆渡人1 天前
论文笔记(一百一十六)ViTa-Zero: Zero-shot Visuotactile Object 6D Pose Estimation
论文阅读
醒了就刷牙2 天前
Vilt论文相关工作部分
论文阅读·论文笔记
m0_743106462 天前
【Feedforward 3dgs】YOU ONLY NEED ONE MODEL
论文阅读·人工智能·计算机视觉·3d·几何学
有Li2 天前
基于小波分析和记忆库的超声长视频时空细节追踪-文献速递-医疗影像分割与目标检测最新技术
论文阅读·文献·医学生
万里鹏程转瞬至2 天前
论文简读:Kwai Keye-VL Technical Report
论文阅读·多模态
川西胖墩墩2 天前
中文PC端跨职能流程图模板免费下载
大数据·论文阅读·人工智能·架构·流程图
静听松涛1333 天前
在线协作跨职能泳道图制作工具 PC版
大数据·论文阅读·人工智能·信息可视化·架构