在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
他们叫我技术总监11 小时前
外企 BI 工具选型:从合规到落地
大数据·bi
2351611 小时前
【MySQL】MVCC:从核心原理到幻读解决方案
java·数据库·后端·sql·mysql·缓存
Lansonli12 小时前
大数据Spark(六十七):Transformation转换算子distinct和mapValues
大数据·分布式·spark
RunningShare13 小时前
基于Flink的AB测试系统实现:从理论到生产实践
大数据·flink·ab测试
IT 小阿姨(数据库)13 小时前
PostgreSQL通过pg_basebackup物理备份搭建流复制备库(Streaming Replication Standby)
运维·服务器·数据库·sql·postgresql·centos
Jolie_Liang15 小时前
保险业多模态数据融合与智能化运营架构:技术演进、应用实践与发展趋势
大数据·人工智能·架构
武子康16 小时前
大数据-118 - Flink 批处理 DataSet API 全面解析:应用场景、代码示例与优化机制
大数据·后端·flink
文火冰糖的硅基工坊16 小时前
《投资-78》价值投资者的认知升级与交易规则重构 - 架构
大数据·人工智能·重构
菲兹园长17 小时前
MySql(SQL)
数据库·sql·mysql
卡拉叽里呱啦18 小时前
Apache Iceberg介绍、原理与性能优化
大数据·数据仓库