在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
七夜zippoe20 小时前
Elasticsearch核心概念与Java客户端实战 构建高性能搜索服务
java·大数据·elasticsearch·集群·索引·分片
vx_bisheyuange20 小时前
基于SpringBoot的知识竞赛系统
大数据·前端·人工智能·spring boot·毕业设计
TDengine (老段)21 小时前
TDengine C# 语言连接器入门指南
大数据·数据库·c#·时序数据库·tdengine·涛思数据
知识分享小能手21 小时前
Oracle 19c入门学习教程,从入门到精通,SQL语言基础详解:语法、使用方法与综合案例(5)
sql·学习·oracle
瑞华丽PLM21 小时前
AI+数字孪生赋能制造业数字化转型
大数据·人工智能·plm·国产plm·瑞华丽plm·瑞华丽
王九思21 小时前
大数据查询工具Hive介绍
大数据·hive·hadoop
檐下翻书1731 天前
HR人力资源管理流程图在线绘制方法
大数据·人工智能·架构·流程图·论文笔记
无忧智库1 天前
一网统飞:城市级低空空域精细化管理与服务平台建设方案深度解析(WORD)
大数据·网络·人工智能
木头程序员1 天前
持续学习(Continual/Lifelong Learning)综述
大数据·人工智能·深度学习·机器学习
Hello.Reader1 天前
Apache Cassandra Connector:Flink 与宽列存储的高吞吐协作
大数据·flink·apache