在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
萤丰信息43 分钟前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
百***75743 小时前
从 SQL 语句到数据库操作
数据库·sql·oracle
i***39583 小时前
SQL 注入详解:原理、危害与防范措施
数据库·sql·oracle
中科岩创7 小时前
河北某铁矿绿色矿山建设二期自动化监测项目
大数据
舒一笑9 小时前
信息的建筑学:MyBatis Log Panda 如何重构开发者的认知地图
后端·sql·intellij idea
java水泥工10 小时前
基于Echarts+HTML5可视化数据大屏展示-物流大数据展示
大数据·前端·echarts·html5·可视化大屏
paperxie_xiexuo10 小时前
学术与职场演示文稿的结构化生成机制探析:基于 PaperXie AI PPT 功能的流程解构与适用性研究
大数据·数据库·人工智能·powerpoint
汤姆yu11 小时前
基于大数据的出行方式推荐系统
大数据·出行方式推荐
core51211 小时前
不借助框架实现Text2SQL
sql·mysql·ai·大模型·qwen·text2sql
bigdata-rookie11 小时前
Spark 部署模式
大数据·分布式·spark