在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
petrel20151 分钟前
【Spark 核心内参】2025.10:从 Parquet 谓词下推的“度”到语义建模的“野心”
大数据·spark
康王有点困1 分钟前
Flink简单使用
大数据·flink
TDengine (老段)2 分钟前
TDengine ODBC 连接器进阶指南
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
菩提小狗8 分钟前
Sqli-Labs Less4:双引号字符型 SQL 注入详解|靶场|网络安全
数据库·sql·web安全
2501_9419820511 分钟前
企微API自动化:动态权重分配新策略
大数据
ViiTor_AI18 分钟前
Instagram 视频如何转文字并翻译成多语言?AI 字幕与本地化实战指南
大数据·人工智能
物联网软硬件开发-轨物科技1 小时前
【轨物方案】新能源的下半场:构筑光伏场站全生命周期智慧运维新范式
大数据·人工智能·物联网
枷锁—sha9 小时前
【PortSwigger Academy】SQL 注入绕过登录 (Login Bypass)
数据库·sql·学习·安全·网络安全
汇智信科9 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统
阿里云大数据AI技术10 小时前
Hologres Dynamic Table 在淘天价格力的业务实践
大数据·人工智能·阿里云·hologres·增量刷新