在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
隔着天花板看星星14 分钟前
Kafka-Consumer理论知识
大数据·分布式·中间件·kafka
holywangle15 分钟前
解决Flink读取kafka主题数据无报错无数据打印的重大发现(问题已解决)
大数据·flink·kafka
隔着天花板看星星17 分钟前
Kafka-副本分配策略
大数据·分布式·中间件·kafka
Lorin 洛林36 分钟前
Hadoop 系列 MapReduce:Map、Shuffle、Reduce
大数据·hadoop·mapreduce
DolphinScheduler社区1 小时前
大数据调度组件之Apache DolphinScheduler
大数据
SelectDB技术团队1 小时前
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
大数据·数据库·数据仓库·数据分析·doris
白云如幻1 小时前
SQL99版链接查询语法
数据库·sql·mysql
爱吃烤鸡翅的酸菜鱼2 小时前
MySQL初学之旅(4)表的设计
数据库·sql·mysql·database
panpantt3212 小时前
【参会邀请】第二届大数据与数据挖掘国际会议(BDDM 2024)邀您相聚江城!
大数据·人工智能·数据挖掘
青云交2 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:跨数据中心环境下的挑战与对策(上)(27 / 30)
大数据·性能优化·impala·案例分析·代码示例·跨数据中心·挑战对策