在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
isfox11 小时前
Google GFS 深度解析:分布式文件系统的开山之作
大数据·hadoop
用户Taobaoapi201412 小时前
京东店铺所有商品API技术开发文档
大数据·数据挖掘·数据分析
三毛200412 小时前
玳瑁的嵌入式日记D33-0908(SQL数据库)
jvm·数据库·sql
在未来等你12 小时前
Kafka面试精讲 Day 8:日志清理与数据保留策略
大数据·分布式·面试·kafka·消息队列
江畔独步13 小时前
Flink TaskManager日志时间与实际时间有偏差
大数据·flink
TDengine (老段)13 小时前
TDengine 选择函数 Last() 用户手册
大数据·数据库·sql·物联网·时序数据库·tdengine·涛思数据
TDengine (老段)14 小时前
TDengine 选择函数 First 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
沧海一粟青草喂马15 小时前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵
心 一15 小时前
Web安全基石:深入理解与防御SQL注入漏洞
sql·安全·web安全
理智的煎蛋16 小时前
CentOS/Ubuntu安装显卡驱动与GPU压力测试
大数据·人工智能·ubuntu·centos·gpu算力