在Spark SQL中,fillna函数

目录

前言

[以下是在Spark SQL中使用fillna函数的示例代码:](#以下是在Spark SQL中使用fillna函数的示例代码:)

运行以上代码将输出:

总结


前言


在Spark SQL中,fillna函数用于填充DataFrame或Dataset中的缺失值(NULL或NaN)。它可以根据指定的列名和值来替换缺失值,以便进行数据清洗和预处理。

以下是在Spark SQL中使用fillna函数的示例代码:

python 复制代码
# 导入必要的库
from pyspark.sql import SparkSession

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例DataFrame
data = [("Alice", 25, None), ("Bob", None, 180.0), ("Charlie", 35, 175.2)]
df = spark.createDataFrame(data, ["name", "age", "height"])

# 使用fillna函数填充缺失值
filled_df = df.fillna({"age": 0, "height": 0.0})

# 显示填充后的DataFrame
filled_df.show()

运行以上代码将输出:


python 复制代码
+-------+---+------+
|   name|age|height|
+-------+---+------+
|  Alice| 25|   0.0|
|    Bob|  0| 180.0|
|Charlie| 35| 175.2|
+-------+---+------+

总结


在上述示例中,首先创建了一个包含姓名、年龄和身高的DataFrame,并且其中包含了一些缺失值(用None表示)。然后,使用fillna函数将缺失值替换为指定的值。在本例中,我们将年龄的缺失值替换为0,将身高的缺失值替换为0.0。填充后得到的DataFrame存储在filled_df变量中。最后,使用show方法显示填充后的DataFrame。

需要注意的是,fillna函数的参数是一个字典,其中键表示要填充的列名,值表示要填充的值。您可以根据实际需求指定不同的列和填充值。

通过使用fillna函数,您可以对DataFrame或Dataset中的缺失值进行处理,以便进行后续的数据分析和建模操作。

相关推荐
IALab-检测行业AI报告生成43 分钟前
IACheck AI 报告审核助手:整体架构与详细结构说明
大数据·人工智能·架构·ai报告审核
码农杂谈00071 小时前
AI 原生企业内容管理:4 大转型策略,破解老软件 AI 升级难题
大数据·人工智能·内容中台·企业内容管理系统·内容生产·ai内容生产·生成式 ai 品牌力
tuotali20263 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
山岚的运维笔记4 小时前
SQL Server笔记 -- 第65章:迁移 第66章:表值参数
数据库·笔记·sql·microsoft·sqlserver
志栋智能4 小时前
AI驱动的系统自动化巡检:重塑IT基石的智慧“守护神”
大数据·运维·人工智能·云原生·自动化
qyr67894 小时前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
码农杂谈00076 小时前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2026-02-18
大数据·数据库·人工智能·经验分享·搜索引擎
知识分享小能手7 小时前
SQL Server 2019入门学习教程,从入门到精通,SQL Server 2019 视图操作 — 语法知识点及使用方法详解(16)
sql·学习·sqlserver
城数派7 小时前
我国逐日地表气压栅格数据(2005-2025年)
大数据·数据分析