关于去除图片上的水印

现在有很多去除水印的工具,但基本上都需要你花钱。作为资深白嫖党,想让我花钱,那是不可能的。

于是我做了下research(search, search, research...),我发现现在的"去水印"基本上都是一个思路:利用图像修复算法。把有水印的地方看作是图像损坏的地方,用相邻像素替换那些损坏的地方。

现在看看有什么开源工具可以用来去除图片上的水印。

1. openCV 图像修复

openCV中就有图像修复的方法,提供了两种算法分别基于_2004 年由 Alexandru Telea 撰写的"基于快速行进方法的图像修复技术"_ 和 Bertalmio,Marcelo,Andrea L. Bertozzi 和 Guillermo Sapiro 在 2001 年的论文"Navier-Stokes,流体动力学和图像和视频修补" 实现。调用cv.inpaint方法时,前者用cv.INPAINT_TELEA标记后者用cv.INPAINT_NS,openCV修复图像的方法使用起来很简单,只需要几行代码:

import numpy as np
import cv2 as cv

img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
# dst = cv.inpaint(img,mask,3,cv.INPAINT_NS)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

上面messi_2.jpg是需要修复的图片,而mask2.png是掩模图片,这张图片的作用是指定图片损坏的位置,该图片只有黑白两色,白色就是损坏的地方。掩模图片和原图的大小(即宽高)必须完全一致,否则会报错。

第一张图像是原图。第二个图像是mask(掩模)。第三个图像是第一个算法的结果,最后一个图像是第二个算法的结果。

对于轻微损坏,或者说只有很少一两个水印的图片,这种方法还是可以的。可是,对于满屏水印的图片怎么办呢?

像这样的:

2. mask图像怎么创建

用openCV去除上面这样图片的水印,首先要面临的问题是mask图片怎么办?

new Bing是这样回答的:

创建掩模图像是图像修复过程中的一个重要步骤。掩模图像用于指示原始图像中需要修复的区域。以下是创建掩模图像的基本步骤:

_1. 打开图像编辑软件:你可以使用任何图像编辑软件,如Photoshop、GIMP或者Paint.NET

_

2. 导入原始图像:将需要修复的原始图像导入到图像编辑软件中。

3. 创建新图层:在原始图像上创建一个新的图层,用于绘制掩模。

4. 选择画笔工具:使用画笔工具,在新图层上绘制需要修复的区域。通常,我们使用白色来标记这些区域。

5. 填充损坏区域:确保所有需要修复的区域都被白色完全覆盖。如果区域很小,可以使用放大工具来帮助精确>绘制。

6. 保存掩模图像:完成绘制后,只保存包含掩模的图层(通常为白色损坏区域和黑色背景)为一个新的图像文>件,格式可以是PNG或BMP,以保留二值信息。在OpenCV中使用掩模图像时,掩模应该是一个二值图像,其中白色代表需要修复的区域,黑色代表不需要修复的区域。如果你有任何疑问或需要进一步的帮助,请告诉我!

学会了吧?然后,让我展示一下真正的技术:

呐,这就是我根据上面的图片创建的掩模图像。

import cv2

def remove_watermark(image_path, watermark_path, output_path):
    # 读取原始图像和水印图像
    original_image = cv2.imread(image_path)
    watermark = cv2.imread(watermark_path, cv2.IMREAD_GRAYSCALE)
    # 去除水印
    watermark_removed = cv2.inpaint(original_image, watermark, 3, cv2.INPAINT_NS)
    # 保存去除水印后的图像
    cv2.imwrite(output_path, watermark_removed)
# 使用示例
remove_watermark("original_image.jpg", "mask.png", "output_image.jpg")

看一下效果吧:

这效果,真是一言难尽,你说它没去吧,它的确没有水印了;你说它去了吧,这还不如不去...

什么原因呢?难道是因为我涂鸦涂得不好?需要更精确?我想过一个鸡贼的办法:往这网站上传一个纯黑的图片,它加了水印我直接下载下来当mask,但这有点冒险...

于是,让我再展示一下真正的技术:

我把水印提取出来做mask这下够精确了吧。

再看效果:

这玩意,不能说跟原图一模一样,那也的确是没啥差别。我觉得这不是mask文件的问题,mask文件太精确不是好事,应该还是修复算法的问题。

3.机器学习修复算法

既然是算法不行,那,有没有更好的修复算法呢?有,就是使用卷积神经网络(CNN)来提取图像的特征,如边缘、纹理、颜色等信息然后修复。现成的也有:

https://github.com/braindotai/Watermark-Removal-Pytorch 这个是使用Pytorch来训练;

https://github.com/zuruoke/watermark-removal 这个用的是tensorflow。

遗憾的是:这两个,无论用哪一个,你都逃不掉创建mask。为什么不能通过机器学习自己识别水印创建mask呢?Watermark-Removal-Pytorch项目的README中也给出了解释:

总的来说: 做水印识别代价太大,而且效果不好。

当我想试试这两个项目的时候,又发现了另外一个项目:iopaint!这个有web界面可以直接在本地跑起来,而且可以下载训练好的模型直接用!于是我装起来试了一下:

直接涂在水印上就可以去除水印,可以涂一个去一个,也可以全部涂好一起去,一起去除要花得时间长一些。

去除的结果是这样的:

这个效果在我看来已经是非常不错了。还有一个让人惊喜的地方是,它还可以下载mask文件!

有了mask文件你就可以批量去除水印了,当然了,你所有图片水印的位置要都一样。我试了一下,某房产网站的图片水印的位置也都是一样的。如果它不升级更新,你可以用一个mask文件去除水印

iopaint run --model=lama --device=cpu \
--image=/path/to/image_folder \
--mask=/path/to/mask_folder \
--output=output_dir

这个命令的解释:

--image is the folder containing input images,--mask is the folder containing corresponding mask images. When --mask is a path to a mask file, all images will be processed using this mask.

iopaint真的是个不错的项目,可是要用起来,你多少要有点编程知识。不过,iopaint有个机智的地方是:它有windows的一键安装包,但是,你得花钱买。哈哈哈。

声明:文中的水印图片来自互联网,我仅拿来做学习交流的。如果侵权了,可以联系我,我先给您磕一个,然后马上删掉。

参考:

https://apachecn.github.io/opencv-doc-zh/#/docs/4.0.0/9.2-tutorial_py_inpainting

https://github.com/zuruoke/watermark-removal

https://github.com/braindotai/Watermark-Removal-Pytorch

https://github.com/Sanster/IOPaint

https://www.iopaint.com/


著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

原文: https://wangxuan.me/tech/2024/06/04/watermark-removal.html

相关推荐
用余生去守护6 分钟前
python报错系列(16)--pyinstaller ????????
开发语言·python
数据小爬虫@10 分钟前
利用Python爬虫快速获取商品历史价格信息
开发语言·爬虫·python
bastgia26 分钟前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
是Dream呀29 分钟前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
菜狗woc34 分钟前
opencv-python的简单练习
人工智能·python·opencv
最爱番茄味1 小时前
Python实例之函数基础打卡篇
开发语言·python
程序猿000001号1 小时前
探索Python的pytest库:简化单元测试的艺术
python·单元测试·pytest
engchina2 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
Dream_Snowar3 小时前
速通Python 第四节——函数
开发语言·python·算法