实现 ChatPDF & RAG:密集向量检索(R)+上下文学习(AG)

实现 ChatPDF & RAG:密集向量检索(R)+上下文学习(AG)

    • [RAG 是啥?](#RAG 是啥?)
    • [怎么优化 RAG?](#怎么优化 RAG?)

RAG 是啥?

RAG 是检索增强生成的缩写,是一种结合了信息检索技术与语言生成模型的人工智能技术。

这种技术主要用于增强 LLM 的能力,使其能够生成更准确且符合上下文的答案,同时减少模型幻觉。

RAG通过将检索模型和生成模型结合起来,利用专有数据源的信息(比如多文档)来辅助文本生成。

实现 RAG 步骤有很多步,涉及的知识点也很多,直接上开源项目,不用深入理解里面每个知识点,能用就行。

开源项目:https://github.com/chatchat-space/Langchain-Chatchat

从本地文档加载到生成语言模型回答的整个流程。

  1. 文本分块

    • 加载文件:这一步骤涉及从本地存储读取文件。
    • 读取文件:将读取的文件内容转换为文本格式。
    • 文本分割:按照一定的规则(例如按段落、句子或词语)将文本分割成小块,便于处理。
  2. 向量化存储

    • 文本向量化:使用NLP技术(如TF-IDF、word2vec、BERT)将文本转换为数值向量。
    • 存储到向量数据库:将文本的向量存储在向量数据库中,如使用FAISS进行高效存储和检索。
  3. 问句向量化

    • 这一步将用户的查询或问题转换为向量,使用的方法应与文本向量化相同,确保在相同的向量空间中比较。
  4. 在文本向量中匹配相似向量

    • 通过计算余弦相似度或欧式距离等,找出与查询向量最相似的顶部k个文本向量。
  5. 构建问题的上下文

    • 将匹配出的文本作为问题的上下文,与问题一起构成prompt,输入给语言模型。
  6. 生成回答

    • 将问题和其上下文提交给语言模型(如GPT系列),由模型生成相应的回答。

通用 RAG 就是如此,最终目的是提供精确和相关的信息回答。

怎么优化 RAG?

方案1:不同领域下,通用 RAG 方案效果也不好,一般需要按场景定制优化的。

  • 比如医学领域,用户搜索感冒,但医学数据库里面是风热流感,关键词不匹配就造成检索错位,只能得到通用信息
  • 分解子问题查询 + 多步查询

方案2:通用 RAG 在文本分块的时候,通常只是粗暴的把 pdf 划分为 1500 块,很多关联的上下文被迫分隔。

  • 最好是按照规则分块,而不是固定一个块,比如按标题(一级标题、二级标题、三级标题...),这样整个子块的内容都完整
  • 再链接每个子块和父文档,复现上下文的相关性
  • 如果那个作者标题写法不好,可以使用语义分割(阿里语义分割模型SeqModel)

方案3:PDF 解析时错漏很多信息,比如老年糖尿病标准变成了糖尿病标准,这个很影响效果

  • 不能使用 pdf 加载器自动拆分,而是要手动精细拆分,再加上多个选项排序,得到最精准的那个

方案4:词嵌入模型没有经过微调,比如我的数据都是医学的,使用的 embedding 模型 没有经过医学微调,很多名词、概念把握不清,只能捕捉到一些通用的医学术语和语法结构

  • 尝试更多embedding模型,获得更精确的检索结果。如:piccolo-large-zh 或 bge-large-zh-v1.5、text2vec、M3E、bge、text-embedding-3 等,或者自己微调词嵌入模型

方案5:如果涉及大量文档,使用 pgVector - 高性能向量数据库引擎,如果存在较多相似的内容,可以考虑分类存放数据,减少冲突的内容

方案6:改进传统 RAG 算法

  • 比如动态检索和重排序
  • 比如multihop多跳检索

方案7:基于文档中的表格问题,通用 RAG 这块效果不好。

  • 优先转为HTML、xml 格式,也可以 OCR
相关推荐
AI_小站1 天前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
我爱学Python!1 天前
解决复杂查询难题:如何通过 Self-querying Prompting 提高 RAG 系统效率?
人工智能·程序人生·自然语言处理·大模型·llm·大语言模型·rag
to be a question6 天前
StructRAG Boosting Knowledge 论文笔记
自然语言处理·llm·论文笔记·rag
致Great8 天前
Invar-RAG:基于不变性对齐的LLM检索方法提升生成质量
人工智能·大模型·rag
水中加点糖9 天前
使用Spring AI中的RAG技术,实现私有业务领域的大模型系统
人工智能·function call·向量数据库·rag·springai·私有大模型·embedding模型
AI完全体10 天前
【AI日记】24.11.08 Knowledge Graphs for RAG (知识图谱,Neo4j,Cypher)
人工智能·自然语言处理·知识图谱·neo4j·rag·日记·cypher
余俊晖21 天前
【RAG】自动化RAG框架-“AutoML风”卷到了RAG?
自然语言处理·自动化·llm·rag
余俊晖21 天前
【多模态&RAG】多模态RAG ColPali实践
多模态·rag
洛阳泰山22 天前
比微软的GraphRag更加强大的LightRAG:简单快速的检索增强生成
数据库·python·microsoft·llm·rag·graphrag·lightrag
健忘的派大星24 天前
什么是RAG,有哪些RAG引擎?看完这一篇你就知道了!!
人工智能·ai·语言模型·langchain·llm·agi·rag